The last answer is the only correct one. Do you want to know why or were you just checking?
Answer:
The offspring is homozygous for eye color
Explanation: I had this question on my test and this was the answer, i hope this helps :)
Quantity of Charge , Q = ne
Where n = number of electrons
e = charge on one electron = -1.6 * 10 ^-19 C.
n = 50 * 10^31 electrons
Q = (50 * 10^31)*( -1.6 * 10 ^-19 ) = -8 * 10^13 C.
Note that the minus sign indicates that the charge is a negative charge.
Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.
Explanation:
At point B, the velocity speed of the train is as follows.

= 
= 26.34 m/s
Now, we will calculate the first derivative of the equation of train.
y = 

Now, second derivative of the train is calculated as follows.
Radius of curvature of the train is as follows.
![\rho = \frac{[1 + (\frac{dy}{dx})^{2}]^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}](https://tex.z-dn.net/?f=%5Crho%20%3D%20%5Cfrac%7B%5B1%20%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B%5Cfrac%7Bd%5E%7B2%7Dy%7D%7Bdx%5E%7B2%7D%7D%7D)
= ![\frac{[1 + 0.2e^{\frac{400}{1000}}^{2}]^{\frac{3}{2}}}{0.2(10^{-3})e^{\frac{400}{1000}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B1%20%2B%200.2e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%7B0.2%2810%5E%7B-3%7D%29e%5E%7B%5Cfrac%7B400%7D%7B1000%7D%7D%7D)
= 3808.96 m
Now, we will calculate the normal component of the train as follows.

= 
= 0.1822 
The magnitude of acceleration of train is calculated as follows.
a = 
= 
= 
Thus, we can conclude that magnitude of the acceleration of the train when it reaches point B, where sAB = 412 m is
.