Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J
Number one a and b are automatically out if you decrease the pitch or frequency you wont hear it louder it does not add up ok?
number 2 the answer would be C the higher the frequency the higher the pitch the lower the frequency the lower the pitch this just comes back to common sense. for example you cant decrease the frequency and than expect a louder pitch its like saying I am going to smash the key on this piano with all my strength and it will make a small very low pitch sound you get what I mean so your answer would indeed be C.
This problem refers to a parallel plate capacitor. There is
an electric field between the two plates. The working equation to be used is
the Gauss’s Law which is
Electric field = Surface charge density / ε0
The answer is -2.52 μC/m2.
<em>your answer would be <u>C</u></em>
<em>by forcing air to move faster over the top of the wing thus creating higher pressure below the wing and lower pressure above the wing</em>
hope this helped you- have a good day bro cya)