The answer is position 3, because it is at its lowest point.
Potential Energy is “stored energy.” It is energy that is ready to be converted or released as another type of energy. We most often think of potential energy as gravitational potential energy. When objects are higher up, they are ready to fall back down. When you stretch an object and it has a tendency to return to its original shape, it is said to have elastic potential energy. Chemical potential energy is the stored energy in a substance’s chemical structure that can be released in a chemical reaction or as heat.
Answer:
250 m/s
Explanation:
The mass of the bullet, m₁ = 100 g = 0.1 kg
The mass of the gun, m₂ = 5 kg
The backward velocity of the gun, v₂ = -5 m/s
Given that the momentum is conserved, we have;
The total initial momentum = The total final momentum
The gun and the bullet are at rest, therefore, we have;
The initial momentum = 0
The total final momentum = m₁·v₁ + m₂·v₂
Where;
v₁ = The forward velocity of the bullet
Therefore, we get;
m₁·v₁ + m₂·v₂ = 0
0.1 kg × v₁ + 5 kg × (-5 m/s) = 0
0.1 kg × v₁ = 5 kg × 5 m/s
v₁ = (5 kg × 5 m/s)/(0.1 kg) = 250 m/s
The forward velocity of the bullet, v₁ = 250 m/s
Answer:
Approximately
, assuming that the gravitational field strength is
.
Explanation:
Let
denote the required angular velocity of this Ferris wheel. Let
denote the mass of a particular passenger on this Ferris wheel.
At the topmost point of the Ferris wheel, there would be at most two forces acting on this passenger:
- Weight of the passenger (downwards),
, and possibly - Normal force
that the Ferris wheel exerts on this passenger (upwards.)
This passenger would feel "weightless" if the normal force on them is
- that is,
.
The net force on this passenger is
. Hence, when
, the net force on this passenger would be equal to
.
Passengers on this Ferris wheel are in a centripetal motion of angular velocity
around a circle of radius
. Thus, the centripetal acceleration of these passengers would be
. The net force on a passenger of mass
would be
.
Notice that
. Solve this equation for
, the angular speed of this Ferris wheel. Since
and
:
.
.
The question is asking for the angular velocity of this Ferris wheel in the unit
, where
. Apply unit conversion:
.
Answer: I put the importance of the lab in the topic is to find how dense an object is and if it can sink or float and it's important to answer the question so you can also find mass and volume.
Explanation: I dunno haha...
Answer:
Explanation:
a = Δv/Δt = (v₁ - v₀) / (t₁ - t₀)
A a = (10 - 0) / (5 - 0) = 2 m/s²
B a = (10 - 10) / (15 - 5) = 0 m/s²
C a = (5 - 10) / (25 - 15) = - 0.5 m/s²