First, find the volume the solution needs to be diluted to in order to have the desired molarity:
You have to use the equation M₁V₁=M₂V₂ when ever dealing with dilutions.
M₁=the starting concentration of the solution (in this case 2.6M)
V₁=the starting volume of the solution (in this case 0.035L)
M₂=the concentration we want to dilute to (in this case 1.2M)
V₂=the volume of solution needed for the dilution (not given)
Explaining the reasoning behind the above equation:
MV=moles of solute (in this case KCl) because molarity is the moles of solute per Liter of solution so by multiplying the molarity by the volume you are left with the moles of solute. The moles of solute is a constant since by adding solvent (in this case water) the amount of solute does not change. That means that M₁V₁=moles of solute=M₂V₂ and that relationship will always be true in any dilution.
Solving for the above equation:
V₂=M₁V₁/M₂
V₂=(2.6M×0.035L)/1.2M
V₂=0.0758 L
That means that the solution needs to be diluted to 75.8mL to have a final concentration of 1.2M.
Second, Finding the amount of water needed to be added:
Since we know that the volume of the solution was originally 35mL and needed to be diluted to 75.8mL to reach the desired molarity, to find the amount of solvent needed to be added all you do is V₂-V₁ since the difference in the starting volume and final volume is equal to the volume of solvent added.
75.8mL-35mL=40.8mL
40.8mL of water needs to be added
I hope this helps. Let me know if anything is unclear.
Good luck on your quiz!
I don’t know what to answer
Answer:
Explanation:
A tetrahedral carbon is__sp³__hybridized while a linear carbon is__sp___hybridized. Two different compounds that have the same molecular formula are known as___isomers____. Pi (π) bonds are generally_weaker (because they overlapped side ways)___than sigma (sigma) bonds. Hybridization is the combination of two or more__atomic ____orbitals to form the same number of__hybrid (combined s and p)__orbitals, each having the same shape and energy. A_pi (π)____bond is formed by side-by-side overlap of two p orbitals. The_electronegativity___is a measure of an atom's attraction for electrons in a bond and indicates how much a particular atom ''wants" electrons. Two Lewis structures that have the same atomic placement and a structure but a different arrangement of pi electrons are called_Resonance structure____. All single bonds are___sigma__bonds.
Answer:
Explanation:
These instrument works on the analysis of the emisson spectral of light received from the star in this way.
Think of a steel knife in your kitchen. Initially, it has this shiny silver colour that typifies it. When the knife is placed on a hot plate, it becomes hotter and begins to go red as the heating continues. If we stop the heating and pour cold water on it, the red dissapears and our knife is back to itself, although the silvery shine would be lost. This is simply how the atomic absorption spectroscopy works. When you see the hot knife you can say a couple of things about it. Different metals have their various melting point. We can compare the temperature at which our knife will melt with a standard melting point scale to know the type of metal it is made of.
In atomic absorption spectroscopy, an atom gains energy and it becomes excited. Every atom is known to have a peculair amount of absorbant energy that cause them to excite. The more the particles in the atom, the more the energy required. When we analyse the absorbent energy of the atom, it differs from other atoms and we truly identify such an atom even if we don't know it. Most times, the energy is given off as light.