The length of the brace required is 4.3m
What is sine rule?
In a ΔABC a, b and c are the sides and A, B and C are angles then,
![\frac{a}{SinA}=\frac{b}{sinB}=\frac{c}{sinC}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7BSinA%7D%3D%5Cfrac%7Bb%7D%7BsinB%7D%3D%5Cfrac%7Bc%7D%7BsinC%7D)
We can find the length, l as shown below:
Let AB=3m, BC=2m and AC=l
Let ∠A=25°
So, in ΔABC
![\frac{BC}{sinA}=\frac{AB}{sinC}=\frac{AC}{SinB}](https://tex.z-dn.net/?f=%5Cfrac%7BBC%7D%7BsinA%7D%3D%5Cfrac%7BAB%7D%7BsinC%7D%3D%5Cfrac%7BAC%7D%7BSinB%7D)
![\frac{BC}{sinA}=\frac{AB}{sinC}](https://tex.z-dn.net/?f=%5Cfrac%7BBC%7D%7BsinA%7D%3D%5Cfrac%7BAB%7D%7BsinC%7D)
![\frac{2}{sin25}=\frac{3}{sinC}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7Bsin25%7D%3D%5Cfrac%7B3%7D%7BsinC%7D)
![\angle{C}=sin^{-1}(\frac{3\times sin25}{2} )](https://tex.z-dn.net/?f=%5Cangle%7BC%7D%3Dsin%5E%7B-1%7D%28%5Cfrac%7B3%5Ctimes%20sin25%7D%7B2%7D%20%29)
∠C=39.34°
∠A+∠B+∠C=180°
∠B=180°-25°-39.34°
∠B=115.66°
![\frac{BC}{sinA}=\frac{AC}{SinB}](https://tex.z-dn.net/?f=%5Cfrac%7BBC%7D%7BsinA%7D%3D%5Cfrac%7BAC%7D%7BSinB%7D)
![\frac{2}{sin25}=\frac{l}{sin(115.66)}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7Bsin25%7D%3D%5Cfrac%7Bl%7D%7Bsin%28115.66%29%7D)
![l=\frac{2\times sin(115.66)}{sin25}](https://tex.z-dn.net/?f=l%3D%5Cfrac%7B2%5Ctimes%20sin%28115.66%29%7D%7Bsin25%7D)
l=4.2659
Rounding to nearest tenth of meter.
l=4.3m
Hence, the length of the brace required is 4.3m
Learn more about Sine Rule here:
brainly.com/question/25852087
#SPJ1
The awnser to this problem is either 12 or 7 by using multiplication or addition
The correct value of this equation is <u>m = </u><u>24</u>
<h3>Resolution method</h3>
This equation contains a fractional term. We note that the denominator of this equation is the <u>term 4</u>. Therefore, we will multiply the sides by <u>4</u>:
13 = m/4 + 7
13 . 4 = 4(m/4) + 7 . 4
52 = m + 28
Now, let's isolate the variable "as negative" and after the equality - we'll be subtracting the terms:
52 = m + 28
-m = 28 - 58
-m = -24
<u>m = 24</u>
Therefore, the correct value of this equation will be <u>m = 24</u>
Answer:
The last option
V = (-1.5,3)
other options dont lie where V is exact
V is only Exact at (-1.5,3)