1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
2 years ago
6

PLEASE HELP QUICK!!

Engineering
1 answer:
ivolga24 [154]2 years ago
5 0

R01= 14.1 Ω

R02=  0.03525Ω

<h3>Calculations and Parameters</h3>

Given:

K= E2/E1 = 120/2400

= 0.5

R1= 0.1 Ω, X1= 0.22Ω

R2= 0.035Ω, X2= 0.012Ω

The equivalence resistance as referred to both primary and secondary,

R01= R1 + R2

= R1 + R2/K2

= 0.1 + (0.035/9(0.05)^2)

= 14.1 Ω

R02= R2 + R1

=R2 + K^2.R1

= 0.035 + (0.05)^2 * 0.1

= 0.03525Ω

Read more about resistance here:

brainly.com/question/17563681

#SPJ1

You might be interested in
1. A _____ is applied to a wall or roof rafters to add strength and keep the building straight and plumb.
PSYCHO15rus [73]

Answer:

A force must s applied to a wall or roof rafters to add strength and keep the building straight and plumb

7 0
3 years ago
Hi I don't know of yall remeber me, but I'm Jadin aka J. I am looking for my friend group, that I have missed but can't find cau
kirill [66]

Answer:

The young lady was his daughter.The shoemaker was frightened when he saw that she wants to sit near him and took his knife to frighten her and leave him alone to do his work

Explanation:

could uh name them since if i know any i would surely tryin help

7 0
2 years ago
We can model a certain battery as a voltage source in series with a resistance. The open-circuit voltage of the battery is 10 V
Angelina_Jolie [31]

Answer:

51.4 Ohms

Explanation:

By applying voltage division rule

V_f=v_i\times \frac {R_l}{R_l+R_m} where v is voltage, subscripts i and f represnt initial and final, R is resistance, m is internal and l is external.Substituting 7V for final voltage, 10V for initial voltage and the external resistance as 120 Ohms then

7=10*\frac {120}{120+R_m}\\7R_m+840=1200\\R_m={1200-840}{7}=51.428571\approx 51.4 Ohms

3 0
3 years ago
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
4 years ago
A pipe of 0.3 m outer diameter at a temperature of 160°C is insulated with a material having a thermal conductivity of k = 0.055
Alekssandra [29.7K]

Answer:

Q=0.95 W/m

Explanation:

Given that

Outer diameter = 0.3 m

Thermal conductivity of material

K= 0.055(1+2.8\times 10^{-3}T)\frac{W}{mK}

So the mean conductivity

K_m=0.055\left ( 1+2.8\times 10^{-3}T_m \right )

T_m=\dfrac{160+273+40+273}{2}

T_m=373 K

K_m=0.055\left ( 1+2.8\times 10^{-3}\times 373 \right )

K_m=0.112 \frac{W}{mK}

So heat conduction through cylinder

Q=kA\dfrac{\Delta T}{L}

Q=0.112\times \pi \times 0.15^2\times 120

Q=0.95 W/m

4 0
3 years ago
Other questions:
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • What happens in double transverse wishbone front suspension when brakes are applied.
    8·1 answer
  • Disconnecting means shall be capable of being locked in the open position. The provisions for locking do not have to reamin in p
    14·1 answer
  • Extra Credit: The Linc (parking lot and stadium)In celebration of the upcoming Super Bowl, for a maximum 10 points of extra cred
    7·1 answer
  • Saturated liquid water at 150 F is put under pressure to decrease the volume by 1% while keeping the temperature constant. To wh
    8·1 answer
  • This is hard please help me you will give brainlist
    5·2 answers
  • while performing a running compression test how should running compression compare to static compression
    5·1 answer
  • Recommend the types of engineers needed to collaborate on a city project to build a skateboard park near protected wetlands.
    6·1 answer
  • Which band has an average of $3.58 per hour of parking?
    11·1 answer
  • Which of the following is NOT one of the 3 technology bets we have made?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!