The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
a) 0.01 μF
b) 0.58 μF
c) 0.060 μF
d) 0.8 μF
Answer:
The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
Please refer to the attached Figure 12-1 where three capacitors are connected in series.
We are asked to find out the equivalent capacitance of this circuit.
Recall that the equivalent capacitance in series is given by

Where C₁, C₂, and C₃ are the individual capacitance connected in series.
C₁ = 0.1 μF
C₂ = 0.22 μF
C₃ = 0.47 μF
So the equivalent capacitance is




Rounding off yields

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Answer:
screw is the answer of the question
Given data:
•) applied voltage = 15 V
•). Resistance = 1000 ohm
Required:
•). The magnitude of current= ?
•••••••••••••SOLUTION•••••••••••••
We can find the relation ship between current, voltage and resistance with the help of Ohms law.
According to ohms law;
V= IR.
Rearranging the above equation;
I= V/ R
Putt the values in the above equation; we get
I= 15V/ 1000ohm
I = 0.015 A( ampere)
••••••••••••••• CONCLUSION•••••••
The value of the current would be 0.15 ampere when Resistance is equal to 1000 and that of Voltage is equal to 15 V.
Answer:
Change in entropy S = 0.061
Second law of thermodynamics is satisfied since there is an increase in entropy
Explanation:
Heat Q = 300 kW
T2 = 24°C = 297 K
T1 = 7°C = 280 K
Change in entropy =
S = Q(1/T1 - 1/T2)
= 300(1/280 - 1/297) = 0.061
There is a positive increase in entropy so the second law is satisfied.
Designing systems for manufacturing, motion analysis or impact testing;
building and testing prototypes;
analyzing the human body to prevent injury;
developing or designing new light weight materials that will be more comfortable and withstand greater impacts or forces;