1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
13

A continuously variable transmission:

Engineering
1 answer:
Reil [10]3 years ago
8 0

Answer:

A continuously variable transmission (CVT) is an automatic transmission that can change seamlessly through a continuous range of gear ratios. This contrasts with other transmissions that provide a limited number of gear ratios in fixed steps. The flexibility of a CVT with suitable control may allow the engine to operate at a constant RPM while the vehicle moves at varying speeds.that means the ans is A.

You might be interested in
A gas within a piston–cylinder assembly undergoes an isothermal process at 400 K during which the change in entropy is 20.3 kJ/K
Mashcka [7]

Answer:

W= 8120 KJ

Explanation:

Given that

Process is isothermal ,it means that temperature of the gas will remain constant.

T₁=T₂ = 400 K

The change in the entropy given ΔS = 20.3 KJ/K

Lets take heat transfer is Q ,then entropy change can be written as

\Delta S=\dfrac{Q}{T}

Now by putting the values

20.3=\dfrac{Q}{400}

Q= 20.3 x 400 KJ

Q= 8120 KJ

The heat transfer ,Q= 8120 KJ

From first law of thermodynamics

Q = ΔU + W

ΔU =Change in the internal energy ,W=Work

Q=Heat transfer

For ideal gas ΔU  = m Cv ΔT]

At constant temperature process ,ΔT= 0

That is why ΔU  = 0

Q = ΔU + W

Q = 0+ W

Q=W= 8120 KJ

Work ,W= 8120 KJ

8 0
3 years ago
Sketch T-s and p-v diagrams for the Diesel cycle.
labwork [276]

Answer:

Diesel cycle:

    All diesel engine works on diesel cycle.It have four processes .These four processes are as follows

1-2.Reversible adiabatic compression

2-3.Heat addition at constant pressure

3-4.Reversible adiabatic expansion

4-1.Heat addition at constant volume

When air inters in the piston cylinder after that it compresses and gets heated due to compression after that heat addition take place at constant pressure after that power is produces when piston moves to bottom dead center.

From the diagram of P-v And T-s we can understand so easily.

3 0
3 years ago
Why would the shear stress be considered as the momentum flux.
oksano4ka [1.4K]

Answer:

A fluid flowing along a flat plate will stick to it at the point of contact

Explanation:

and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.

3 0
2 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
2 years ago
The total solids production rate in an activated sludge aeration tank is 7240 kg/d on a dry mass basis. It is necessary to maint
snow_lady [41]

Answer:

volume of biological sludge = 28.566 m³ per day

Explanation:

given data

mass of solid = 7240 kg/day

initial moisture content = 78%

solution

here percentage of solid will be

% of solid = 100 - initial moisture content

% of solid = 100 - 78 = 22 %

so that

mass of sludge produced = \frac{100}{100 - P} M kg  per day

put her value

mass of sludge produced = \frac{100}{100 - 78} 7240 kg

mass of sludge produced = 32909.09 kg

so

specific gravity of sludge =  \frac{\rho sludge}{\rho water }

and as we know that

\frac{100}{S sludge} = \frac{solid percentage}{S solid} = \frac{water percentage}{S water}

\frac{100}{S sludge} = \frac{22}{2.5} = \frac{78}{1}

S sludge = 1.152

so that

density of sludge = S sludge × density of water

density of sludge = 1.152 × 1000

density of sludge = 1152 kg/m³

so that

volume of biological sludge = \frac{mass sludge produce}{\rho sludge}

volume of biological sludge = \frac{32909.09}{1152}

volume of biological sludge = 28.566 m³ per day

6 0
3 years ago
Other questions:
  • The soil borrow material to be used to construct a highway embankment has a mass unit weight of 107.0 lb/cf and a water content
    6·1 answer
  • Rosalind franklin<br> What was she famous for
    14·1 answer
  • For some transformation having kinetics that obey the Avrami equation (Equation 10.17), the parameter n is known to have a value
    12·1 answer
  • A very specific part of the population is called a
    6·1 answer
  • Going green means: increasing one's initiatives toward a concern for the environment. increasing one's bottom line, before any o
    15·1 answer
  • For the system in problem 4, suppose a main memory access requires 30ns, the page fault rate is .01%, it costs 12ms to access a
    14·1 answer
  • Refrigerant-134a enters an adiabatic compressor at -30oC as a saturated vapor at a rate of 0.45 m3 /min and leaves at 900 kPa an
    13·1 answer
  • How is the air delivery temperature controlled during A/C operation?
    8·1 answer
  • Anna makes arrangements to reuse waste water that has been used in sinks and showers. Which term refers to the waste water that
    15·1 answer
  • What should be your strongest tool be for gulding your ethical decisions making process
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!