1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
9

A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.40 µF, and a source with ΔVmax = 240 V operatin

g at 50.0 Hz. The maximum current in the circuit is 110 mA.
(a) Calculate the inductive reactance.
(b) Calculate the capacitive reactance.
(c) Calculate the impedance.
Engineering
2 answers:
worty [1.4K]3 years ago
8 0
<h2>Answer:</h2>

(a) 78.55Ω

(b) 720Ω

(c) 2181.8Ω

<h2>Explanation:</h2>

(a) The inductive reactance, X_{L}, is the opposition given to the flow of current through an inductor and it is given by;

X_{L} = 2 π f L            --------------------(i)

Where;

f = frequency

L = inductance

From the question;

f = 50.0Hz

L = 250mH = 0.25H

Take π = 3.142 and substitute these values into equation (i) as follows;

X_{L} = 2 π (50.0) (0.25)

X_{L} = 25(3.142)

X_{L} = 78.55Ω

Therefore, the inductive reactance is 78.55Ω

(b) The capacitance reactance, X_{C}, is the opposition given to the flow of current through a capacitor and it is given by;

X_{C} = (2 π f C) ⁻ ¹           --------------------(ii)

Where;

f = frequency

C = capacitance

From the question;

f = 50.0Hz

C = 4.40μF = 4.40 x 10⁻⁶ F

Take π = 3.142 and substitute these values into equation (ii) as follows;

X_{C} = [2 π (50.0) (4.40 x 10⁻⁶)] ⁻ ¹

X_{C} = [440 x (3.142) x 10⁻⁶)] ⁻ ¹

X_{C} = [1382.48 x 10⁻⁶] ⁻ ¹

X_{C} = [1.382 x 10⁻³] ⁻ ¹

X_{C} = 0.72 x 10³ Ω

X_{C} = 720Ω

Therefore, the capacitive reactance is 720Ω

(c) Impedance, Z, is the ratio of maximum voltage, V_{max} to maximum current, I_{max}, flowing through a circuit. i.e

Z = \frac{V_{max}}{I_{max}}                 -------------------(iii)

From the question;

V_{max} = 240V

I_{max} = 110mA = 0.11A

Substitute these values into equation (iii) as follows;

Z = \frac{240}{0.11}

Z = 2181.8Ω

Therefore, the impedance in the circuit is 2181.8Ω

slega [8]3 years ago
7 0

Answer:

Explanation:

Inductance = 250 mH = 250 / 1000 = 0.25 H

capacitance = 4.40 µF = 4.4 × 10⁻⁶ F ( µ = 10⁻⁶)

ΔVmax = 240, f frequency = 50Hz and I max = 110 mA = 110 /1000 = 0.11A

a) inductive reactance = 2πfl =  2 × 3.142 × 50 × 0.25 H =78.55 ohms

b) capacitive reactance = \frac{1}{2\pi fC} = 1 / ( 2 × 3.142× 50 × 4.4 × 10⁻⁶ ) = 723.34 ohms

c) impedance = \frac{Vmax}{Imax} = 240 / 0.11 = 2181.82 ohms

You might be interested in
A centimeter is Viooth of a meter, while a kilo-
tatuchka [14]

Answer:

b. False

Explanation:

A centimeter is a hundredth of a meter. This means 1/100 ,1 cm = 0.01 m

A kilo is 1000 grams.

The first answer is false because a hundredth isnot written well.

The second statement is false because the comparison given is of different units of measure. For distance is meters where as for weight is kilograms.

8 0
3 years ago
What is a problem that technology can help solve that problem?
Maslowich
Seeing what the other side of the world is doing right now
8 0
3 years ago
Read 2 more answers
Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -16oC and a quality of 20% at a ve
Dmitry [639]

Answer:

mass flow rate = 0.0534 kg/sec

velocity at exit = 29.34 m/sec

Explanation:

From the information given:

Inlet:

Temperature T_1 = -16^0\ C

Quality x_1 = 0.2

Outlet:

Temperature T_2 = -16^0 C

Quality  x_2 = 1

The following data were obtained at saturation properties of R134a at the temperature of -16° C

v_f= 0.7428 \times 10^{-3} \ m^3/kg \\ \\  v_g = 0.1247 \ m^3 /kg

v_1 = v_f + x_1 ( vg - ( v_f)) \\ \\ v_1 = 0.7428 \times 10^{-3} + 0.2 (0.1247 -(0.7428 \times 10^{-3})) \\ \\  v_1 = 0.0255 \ m^3/kg \\ \\ \\  v_2 = v_g = 0.1247 \ m^3/kg

m = \rho_1A_1v_1 = \rho_2A_2v_2 \\ \\  m = \dfrac{1}{0.0255} \times \dfrac{\pi}{4}\times (1.7 \times 10^{-2})^2\times 6  \\ \\ \mathbf{m = 0.0534 \ kg/sec}

\rho_1A_1v_1 = \rho_2A_2v_2 \\ \\ A_1 =A_2  \\ \\  \rho_1v_1 = \rho_2v_2   \\ \\ \implies \dfrac{1}{0.0255} \times6 = \dfrac{1}{0.1247}\times (v_2)\\ \\ \\\mathbf{\\ v_2 = 29.34 \ m/sec}

3 0
2 years ago
1. Fatigue equations are based solely on theoretical assumptions. Experimental data is only used to verify the theory. a. True.b
Rainbow [258]

Answer:

1.  b. False

2. b. False

3.  b. False

4.  b. False

5. a. True

6. a. True

7.  b. False

8.  b. False

9. a. True

Explanation:

1. The fatigue properties of a material  are determined by series of test.

2. For most steels there is a level of fatigue limit below which a component will survive an infinite number of cycles, for aluminum and titanium a fatigue limit can not be defined, as failure will eventually occur after enough experienced cycles.

3. Although there is a cyclic stress, there are also stresses complex circumstances involving tensile to compresive and constant stress, where the solution is given into the mean stress and the stress amplitude or stress range, which is double the stress amplitude.

4. Low‐cycle fatigue is defined as few thousand cycles and high cycle fatigue is around more than 10,000 cycles.

5. The number of cycles for failure on brittle materials are less and determined compared with the ductile materials.

6.  The bending fatigue could be handled with specific load requirements  for uniform bending or axial fatigue of the same section size where the material near the surface is subjected to the  maximum stress, as in torsional fatigue, which can be performed on  axial-type specially designed machines also, using the proper fixtures if  the maximum twist required is small, in which linear motion is changed to rotational motion.

7.  A SN-Curve for a given material, is a plot displayed on logarithmic scales of the magnitude of an alternating stress in relation to the number of cycles to failure

8. The strain life method measures the strain resistance of local stresses and strains around stress concentration that controls the fatigue life of the material. It is more accurate than determining fatigue performance as the stress-life method is for long life millions of cycles in elastic stresses, but an it gets an effective stress concentration in fatigue loading.

9. Linear Elastic Fracture Mechanics (LEFM) states that the material is isotropic and linear elastic so, when the stresses near the crack surpasses the material fracture toughness, the crack grows.

7 0
3 years ago
stimate the maximum efficiency of an automobile engine that has a compression ratio of 5:1.0. Assume the engine operates accordi
Fed [463]

Answer:

Efficiency based on Otto cycle.

Effotto = 47.47%

Explanation:

Efficiency based on Otto cycle.

effotto = 1 – (V2 / V1)^γ-1

effotto = 1 – (1 / 5)^1.4 - 1

effotto = 47.47%

5 0
2 years ago
Other questions:
  • To make 1000 containers of ice cream you need: 600 gallons of milk, 275 gallons of cream, and 120 gallons of flavor. Each ingred
    12·1 answer
  • The structure supports a distributed load of w. The limiting stress in rod (1) is 370 MPa, and the limiting stress in each pin i
    5·1 answer
  • The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
    10·1 answer
  • Ok I need a new laptop but I'm not sure which one. The Surface laptop 3 is better in many fields like the camera, speaker, audio
    14·1 answer
  • The MOST common injury causing absence from work is
    7·2 answers
  • Based on the pattern, what are the next two terms of the sequence? 9,94,916,964,9256,... A. 91024,94096 B. 9260,91028 C. 9260,92
    5·1 answer
  • A team of engineers is working on a design to increase the power of a hydraulic lever. They have brainstormed several ideas. Whi
    13·1 answer
  • Could you please answer this question clearly?
    11·1 answer
  • Question 2
    12·1 answer
  • Which step in the engineering design process does not come before building a<br> prototype?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!