1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
15

Solar energy stored in large bodies of water, called solar ponds, is being used to generate electricity. If such a solar power p

lant has an efficiency of 4.5 percent and a net power output of 150 kW, determine the average value of the required solar energy collection rate, in Btu/h.
Engineering
1 answer:
fgiga [73]3 years ago
3 0

Answer: 1.137*10^7 Btu/h.

Explanation:

Given data:

Efficiency of the plant = 4.5percent

Net power output of the plant = 150kw

Solution:

The required collection rate

QH = W/n

= 150/0.045 * 0.94782/ 1 /60 */60 Btu/h.

= 3333.333 *3412.152Btu/h.

= 11373840 Btu/h

= 1.137*10^7 Btu/h.

You might be interested in
Create a program named PaintingDemo that instantiates an array of eight Room objects and demonstrates the Room methods. The Room
Serggg [28]

Answer:

Explanation:

Code used will be like

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace PaintingWall

{

class Room

{

public int length, width, height,Area,Gallons;

public Room(int l,int w,int h)

{

length = l;

width = w;

height = h;  

}

private int getLength()

{

return length;

}

private int getWidth()

{

return width;

}

private int getHeight()

{

return height;

}

public void WallAreaAndNumberGallons()

{

Area = getLength() * getHeight() * getWidth();

if (Area < 350)

{

Gallons = 1;

}

else if (Area > 350)

{

Gallons = 2;

}    

Console.WriteLine ("The area of the Room is " + Area);

Console.WriteLine("The number of gallons paint needed to paint the Room is " + Gallons);

}

 

}

class PaintingDemo

{

static void Main(string[] args)

{

int l, w, h;

Room[] r = new Room[8];

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room "+(i+1));

Console.Write("Enter Length : ");

l = Convert.ToInt32(Console.ReadLine() );

Console.Write("Enter Width : ");

w = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter Height : ");

h= Convert.ToInt32(Console.ReadLine());

r[i] = new Room(l,w,h);

Console.WriteLine();

}

for (int i = 0; i <= 7; i++)

{

Console.WriteLine("Room " + (i + 1));

r[i].WallAreaAndNumberGallons();

}

Console.ReadKey();  

}

}

}

3 0
3 years ago
For an Otto cycle, plot the cycle efficiency as a function of compression ratio from 4 to 16.
Elza [17]

Assumptions:

  • Steady state.
  • Air as working fluid.
  • Ideal gas.
  • Reversible process.
  • Ideal Otto Cycle.

Explanation:

Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):

  • Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
  • Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

        r =\frac{V_1}{V_2}

  • Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
  • Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

         r = \frac{V_4}{V_3} = \frac{V_1}{V_2}

  • Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
  • Exhaust 1-0: the working fluid is vented to the atmosphere.

If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

           \eta = 1-(\frac{1}{r^{\gamma - 1} } )

where:

           \gamma = \frac{C_{p} }{C_{v}} : specific heat ratio

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

           \gamma = 1.4

Answer:

See image attached.

5 0
3 years ago
A hawser is wrapped two full turns around a bollard. By exerting an 80-lb force on the free end of the hawser, a dockworker can
Brut [27]

Answer:

μ=0.329, 2.671 turns.

Explanation:

(a)   ln(T2/T1)=μβ         β=angle of contact in radians

take T2 as greater tension value and T1 smaller, otherwise the friction would be opposite.

T2=5000 lb and T1=80 lb

we have two full turns which makes total angle of contact=4π  radians

μ=ln(T2/T1)/β=(ln(5000/80))/4π  

μ=0.329

(b) using the same relation as above we will now compute the angle of contact.

take greater tension as T2 and smaller as T1.

T2=20000 lb     T1=80 lb   μ=0.329

β=ln(20000/80)/0.329=16.7825 radians

divide the angle of contact by 2π to obtain number of turns.

16.7825/2π =2.671 turns

4 0
3 years ago
Which of the following are considered software piracy? Check all of the boxes that apply.
Serga [27]

Answer:

The answer is copying a program to give to someone else to use

and burning a copy of a DVD to sell

Explanation:

Software piracy is the act of stealing software that is legally protected. This stealing includes copying, distributing, modifying or selling

7 0
3 years ago
The annual inventory cost C for a manufacturer is given below, where Q is the order size when the inventory is replenished. Find
Nataly_w [17]

The change in annual cost when Q is increased from 340 to 341 is -1.23 and the instantaneous rate of change when Q = 340 is -1.25

<h3>How to find the Instantaneous rate of change?</h3>

The annual inventory cost C for a manufacturer is given as;

C = (1012000/Q) + 7.5Q

where Q is the order size when the inventory is replenished.

Now, the change in C can be calculated by evaluating the cost function at Q = 340 and Q = 341

Change in C = [1,012,000/341 + 7.5*341] - [1,012,000/340 + 7.5*340] ≈ -1.23

Instantaneous rate of change in C is first order derivative C':

C'(Q) = -1,012,000/(Q²) + 7.5

C'(340) = -1,012,000/(340²) + 7.5 ≈ -1.25

Read more about Instantaneous rate of change at; brainly.com/question/14666106

#SPJ1

8 0
1 year ago
Other questions:
  • Which one of the following statements about the Wright brothers is not true?
    6·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • Air at 20 C and 1 atm flows over a flat plate at 35 m/s. The plate is 75 cm long and is maintained at 60 с. Assuming unit depth
    8·1 answer
  • You are preparing to work with Chemical A. You open the appropriate storage cabinet, and notice Chemical B, as well as Chemical
    9·1 answer
  • A car is about to start but it blows up. what is the problem with the car<br> ?
    6·2 answers
  • The purpose of the __________ algorithm is to enable two users to exchange a secret key securely that can then be used for subse
    8·1 answer
  • The chart shows the bids provided by four engineers to test a prototype.
    6·1 answer
  • Acoke can with inner diameter(di) of 75 mm, and wall thickness (t) of 0.1 mm, has internal pressure (pi) of 150 KPa and is suffe
    9·1 answer
  • What friction rate should be used to size a duct for a static pressure drop of 0.1 in wc if the duct has a total equivalent leng
    9·1 answer
  • Explain why surface temperature increases when two bodies are rubbed against each other. What is the significance of temperature
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!