Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
Answer:
<h3>The answer is 9500 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 950 kg
velocity = 10.0 m/s
We have
momentum = 950 × 10
We have the final answer as
<h3>9500 kgm/s</h3>
Hope this helps you
Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Researchers found the "cosmic microwave background radiation", which is a heat imprint left over from the big bang.
The redshift of light emitted by most galaxies indicates the universe is expanding.
Let's calculate the average acceleration. It is the rate of changing speeds. Hence, we need to calculate the difference of speeds. 10-6=4 m/s. The rate is now

.
In general, the formula for the mean acceleration between two times 1 and 2 is given by:

where v1 and v2 are the speeds at the respective points and T is the time interval between them.