Something hot like a fire , an eye of a stove , and the sun
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Option B:
A child sitting on a swing.
Explanation:
When we hear the word oscillator, a good example is the pendulum bob of a grandfather clock. We can picture the motion to get a perfect understanding of its path of motion and relate it to other systems of motion in our everyday life.
An oscillator is a system that moves in such a way that it reverses its direction after a period of time. It can be seen as a "to-and-fro" motion.
From the options, a child sitting on a swing is the perfect example of an oscillating system because the child will be moving forwards and backwards, alternately reversing the direction of motion with time.
It is wasted, most likely as light, in this case, or it is lost during the transport of electricity.