Answer:
8.34
Explanation:
1) how much moles of NH₃ are in the reaction;
2) how much moles of H₂ are in the reaction;
3) the required mass of the H₂.
all the details are in the attachment; the answer is marked with red colour.
Note1: M(NH₃) - molar mass of the NH₃, constant; M(H₂) - the molar mass of the H₂, constant; ν(NH₃) - quantity of NH₃; ν(H₂) - quantity of H₂.
Note2: the suggested solution is not the shortest one.
Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
A low electronegativity
Explanation:
Potassium is a metal that is expected to have a very low electronegativity value.
Electronegativity is the relative tendency by which an atom attracts valence electrons in a chemical bond.
Potassium is an element in the first group on the periodic table.
The common trend is that electronegativity increases from left to right and decreases down a group.
- Potassium as metal will prefer to lose electrons rather than attracting because that will make it achieve the octet configuration that will ensure its stability.
- This is why it will have low electronegativity.
Learn more:
Electronegativity brainly.com/question/11932624
#learnwithBrainly
We are given the base dissociation constant, Kb, for Pyridine (C5H5N) which is 1.4x10^-9. The acid dissociation constant, Ka for the Pyridium ion or the conjugate acid of Pyridine is to be determined. We know from our chemistry classes that:
Kw = Kb * Ka
where Kw is always equal to 1x10^-14
so, to solve for Ka of Pyridium ion, substitute Kb to the equation together with Kw and solve for Ka:
1x10^-14 = 1.4x10^-9 * Ka
solve for Ka
Ka = 7.14x10^-6
Therefore, the acid dissociation constant of Pyridinium ion is 7.14x10^-6.
<span />
You should clean up after every investigation because if you leave a mess, maybe another detective will come in and get lost because of the mess you left.