Answer:
The correct answer is 0, 235 mol
Explanation:
We use the formula PV =nRT. The normal conditions of temperature and pressure are 273K and 1 atm, we use the gas constant = 0, 082 l atm / K mol:
1 atm x 5, 25l = n x 0, 082 l atm / K mol x 273 K
n= 1 atm x 5, 25l /0, 082 l atm / K mol x 273 K
n= 0, 235 mol
Moles of electrons:
The moles of electrons that are transferred are 12F
A balanced equation:
2 moles of Aluminium metal react with excess copper(II) nitrate.

Given:
Moles of Aluminium = 2
As Aluminium goes from 0 to +3 oxidation state

And copper goes from +2 to 0

On balancing the number of electrons we get:
For 1 mole of Al
is required.
Therefore for 2 moles of Al,
Total
F mole of electrons
Where F= Faraday's constant= 96500 C
So, 12F moles of electrons are transferred.
Learn more about Faraday's Law here,
brainly.com/question/27985929
#SPJ4
First you need to know the different between an ionic and covalent bond. An ionic bond is the pairing of a metal and non-metal element. A covalent bond is the pairing of 2 nonmetals.
Metals are the elements at the left of the periodic table while non-metals are the elements at the right of the periodic table.
You should also know the diatomic (di means 2) molecules also known as the fab 7. These molecules will always form covalent bonds. These molecules are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. With the subscripts, these molecules would be written as H ₂, N ₂, O ₂, F ₂, Cl ₂, Br ₂, and I ₂.
Answer:
D, E and F
Explanation:
About tetrachloro cobalt complexes, the following facts have been observed
- Color of the tetrachloro cobalt complexes is blue.
- They do not decompose on heating that means synthesis of tetra chloro is endothermic.
About hexa aqua cobalt complexes, the following facts have been observed
- Color of the hexa aqua cobalt complexes is pink color.
- They decompose on heating and remain stable on cooling that means process of synthesis of hexa aqua cobalt complexes is exothermic.
Based on above, the correct statements are:
The correct is chloro cobalt complex is blue and aqua cobalt
complex is pink.
The chloro complex is favored by heating.
If the chloro complex is a product, then the reaction must be endothermic.
The correct options are D, E and F.