Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:

Where:
Q: is the energy transferred = 5.0 MJ
: is the Boltzmann constant = 1.38x10⁻²³ J/K
: is the initial temperature = 1000 K
: is the final temperature = 500 K
Hence, the entropy change is:
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
When a chemical reaction takes place it changes the composition of the reactants. The ways to tell if a reaction is occurring are,
1-Release of heat
2-Production of a gas
3-Formation of a precipitate
4-Change in color
Answer:
That would be helium, with a melting point of 0.95 K (-272.20 °C)—although this happens only under considerable pressure (~25 atmospheres). At ordinary pressure, helium would remain liquid even if it could be chilled to absolute zero.
First, the symbol for sodium oxide is Na₂O
Each Na (sodium) has a charge of 1+, and each O has a charge of 2- :
Na₂¹⁺O²⁻
There are two Na's, however, and each one is 1+, however, so the Na₂ has a total charge of 2+. Because of this, the 2+ from the 2 Na's and the 2- from the O cancel each other out to make 0.
The standard enthalpy of reaction should be negative.
<h3>What is enthalpy?</h3>
A thermodynamic quantity equivalent to the total heat content of a system. It is equal to the internal energy of the system plus the product of pressure and volume.
Inside the heat pack are two chemicals that get mixed when you smush them together. As they mix, some weak bonds are broken, which takes a little bit of energy. But new, stronger bonds form which release energy. Releasing that energy causes the surroundings to heat up.
Hence, option B is correct.
Learn more about enthalpy here:
brainly.com/question/13775366
#SPJ1