Decrease because loss of electrons.
Answer:
In chemistry and quantum mechanics, an orbital is a mathematical function that describes the wave-like behavior of an electron, electron pair, or (less commonly) nucleons. An orbital can contain two electrons with paired spins and is often associated with a specific region of an atom.
Explanation:
Answer:
6.66 mL
Explanation:
The increase in the volume is due to the addition of the iron whose volume can be calculated as:
Using,
Density = Mass / Volume
Given that:
Density of Iron = 7.87 g/cm³
Mass of iron = 52.4 g
Thus, volume is:
Volume = Mass / Density = 52.4 / 7.87 cm³ = 6.66 cm³
Also, 1 cm³ = 1 mL
<u>The rise in the volume = 6.66 mL</u>
Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184

- m= 32 g
- ΔT= Tfinal - Tinitial= 22°C - 8°C= 14°C
Replacing:
Q= 32 g* 4.184
*14 °C
Solving:
Q= 1,874.432 J
<u><em>The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J</em></u>