Answer:
33300J
Explanation:
Given parameters:
Mass of ice = 100g
Unknown:
Amount of energy = ?
Solution:
This is a phase change process from solid to liquid. In this case, the latent heat of melting of ice is 3.33 x 10⁵ J/kg.
So;
H = mL
m is the mass
L is the latent heat of melting ice
Now, insert the parameters and solve;
H = mL
mass from gram to kilogram;
100g gives 0.1kg
H = 0.1 x 3.33 x 10⁵ = 33300J
Answer:
Hi how are you doing today Jasmine
Answer:
Increasing the temperature of the reactants
Explanation:
This causes more vibrations to occur, hence increasing the kinetic energy of the particles. The number of particles with activation energy would increase as well because they have higher kinetic energy. Kinetic energy is also the reason why the collision between particles increases. And the frequency of effective collisions increases because of the kinetic energy as well, keep in mind the particles must also be orientated in the correct way as well.
Answer:
168°C is the melting point of your impure sample.
Explanation:
Melting point of pure camphor= T =179°C
Melting point of sample =
= ?
Depression in freezing point = 
Depression in freezing point is also given by formula:

= The freezing point depression constant
m = molality of the sample = 0.275 mol/kg
i = van't Hoff factor
We have:
= 40°C kg/mol
i = 1 ( non electrolyte)




168°C is the melting point of your impure sample.
The nuclear reactions which are under experimenter's control are said to be controlled nuclear reactions. In this, you can maintain the speed of the incident particle. α and β-decay process are examples of non-controlled nuclear reactions.