Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm
Answer:
1.what I observe.
Explanation:
The dependent variable in an experiment is what is being observed in the experimental procedure.
This variable is the one that is closely tied to the effects originating from changing the independent variables.
- Independent variables are the ones that cause the observation being studied.
- The effects produced and then studied are the dependent variables.
If you drop a bath bomb into water, then it will fizz because a chemical reaction is taking place.
Answer:
The concentration of the solution will be much lower than 6M
Explanation:
To prepare a solution of a solid, the appropriate mass is taken and accurately weighed in a weighing balance and then made up to mark with distilled water.
From
n= CV
n = number of moles m/M( m= mass of solid, M= molar mass of compound)
C= concentration of substance
V= volume of solution
m=120g
M= 40gmol-1
V=500ml
120/40= C×500/1000
C= 120/40× 1000/500
C=6M
This solution will not be exactly 6M if the student follows the procedure outlined in the question. The actual concentration will be much less than 6M.
This is because, solutions are prepared in a standard volumetric flask. Using a 1000ml beaker, the student must have added more water than the required 500ml thereby making the actual concentration of the solution less than the expected 6M.