D is the correct answer
every other option contains an element
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Main advantages of DDT are the insecticide property and the knoledge about its chemical synthesis.
Explanation:
At that time in 1939 it was discovered that DDT have insecticide properties. It is a useful property because it allows inhibition of insects populations in large areas. Killing insects will reduce the diseases transmitted by them as typhus and malaria. More over you prevent the destruction of the agricultural crops by the harmful insects.
However the synthesis of the molecule was known way back in 1874. From that time it was plenty of time in which chemistry knowledge evolved so the synthesis at kilograms scale was implemented. High quantities of DDT molecule become available for the market so that in 1945 was available as agricultural insecticide.
It was discovered that DDT have bad effects for human health and also over time some insects developed resistance and their were not affected anymore by the molecule.
You may find the chemical structure of DDT in the attached figure.
Lean more:
about DDT
brainly.com/question/1417051
#learnwithBrainly
Endothermic reactions are reactions that require heat in the course of the process. The heat of reaction in this case is positive which means the energy of the products is greater than the energy of the reactants. In this case, the answer to this problem would have to be <span>1. must be greater than the required ΔH </span>
Answer:Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Explanation: