Answer:
6 moles of electrons
Explanation:
Let us consider the species NO3− and ClO−. The NO3− is oxidized to NO the oxidation number of nitrogen is decreased from +5 to +2.
The oxidation number of chlorine is increased from +1 to +3. This implies that six electrons were transferred in the balanced reaction equation shown in the question. Hence the answer.
#4 and #5:
To find pH given concentration of H+ or H30+
pH = - log (H+ or H30+ M)
To find pH given concentration of OH-
Since you already found the pH for this (in #4), you subtract #4's answer from 14.
14 - (pH) = pOH
694,563,239 rounded to the nearest thousand is 694,563.
It's because the first digit from the right is for ones, second for tens, third for hundreds and fourth for thousands and that's the one that we should take a closer look at. You can round it either to 3 or 4, depends on the digit of hundreds. In this case 3239 is clearly closer to 3000 than 4000, that's why we round it to 694,563, not 694,564.
Answer:
The change in the internal energy of the system -878 J
Explanation:
Given;
energy lost by the system due to heat, Q = -1189 J (negative because energy was lost by the system)
Work done on the system, W = -311 J (negative because work was done on the system)
change in internal energy of the system, Δ U = ?
First law of thermodynamics states that the change in internal energy of a system (ΔU) equals the net heat transfer into the system (Q) minus the net work done by the system (W).
ΔU = Q - W
ΔU = -1189 - (-311)
ΔU = -1189 + 311
ΔU = -878 J
Therefore, the change in the internal energy of the system -878 J
The energy<span> per </span>photon<span> is proportional to the </span>frequency<span> of the radiation when considered as waves, ie inversely proportional to the </span>wavelength. Double the wavelength<span>, halve the </span>photon energy<span>. This means that long </span>wavelength<span> radiation (radio waves) has low </span>photon energy<span> and so does not penetrate matter.</span>