Bbbbb x sidisjeiiwkwnsiwowownsxjid i’m so sorry but i need help in this one class i’m trying to get answers to hope you understand
Answer:
Atmosphere.
Explanation:
Carbon moves from fossil fuels to the atmosphere when fuels are burned. When humans burn fossil fuels to power factories, power plants, cars and trucks, most of the carbon quickly enters the atmosphere as carbon dioxide gas.
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
Wind
Explanation:
Most conifers and about 12% of the world's flowering plants are wind-pollinated. Wind pollinated plants include grasses and their cultivated cousins, the cereal crops, many trees, the infamous allergenic ragweeds, and others. All release billions of pollen grains into the air so that a lucky few will hit their targets.
Answer:
A) 2.69 M
B) 0.059
Explanation:
A) We have:
33.8% solute by mass= 33.8 g solute/100 g solution
molarity = mol solute/ 1 L solution
molarity=
x
x
x 
molarity= 2.69 mol solute/L solution = 2.69 M
B) We know that there are 33.8 g of solute in 100 g of solution.
As the total solution is compounded by solute+solvent (in this case, solvent is water), the mass of water is the difference between the mass of the total solution and the mass of solute:
mass of water= 100 g - 33.8 g = 66.2 g
Now, we calculate the number of mol of both solute and water:
mol solute= 33.8 g solute x
= 0.232 mol
mol H20= 66.2 g H₂O x 
Finally, the mol fraction of solute (Xsolute) is calculated as follows:
Xsolute=
Xsolute= 0.059