1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
2 years ago
11

Two part?cles move about each other in circular orbits under the influence of gravita- tional forces, with a period t. Their mot

ion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time ?/4v2.
Physics
1 answer:
Pavlova-9 [17]2 years ago
3 0

It has been proven below that the two orbiting particles collided after a time τ/4√2.

<h3>How to prove the particles collided after a given time?</h3>

Assuming the particles to be point particles, the orbital period (time of fall) before the orbital motion is stopped for these particles would be derived by applying the Lagrangian equation for two orbiting particles:

L = T - V

L = 1/2MR² + 1/2μr² + Gm₁m₂/|r|     .....equation 1.

<u>Where:</u>

  • M = m₁ + m₂
  • μ = m₁m₂/m₁ + m₂

<u>Note:</u> The radius, r is constant in a circular orbit.

In Orbit Mechanics, the equation of relative motion is given by:

μr - μrθ = -Gm₁m₂/r²

Letting a = r, we have:

μaθ² = -Gm₁m₂/a²

Making θ the subject of formula and differentiating wrt t, we have:

\theta = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\\frac{d\theta}{dt}  = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} d\theta\\\\

Integrating over a full revolution, we have:

\int\limits^\tau_0  dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} \int\limits^{2 \pi} _0d\theta\\\\\\\tau = \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }}.......equation 2.

Since the motion of the two orbiting particles is suddenly stopped (θ = 0) at a given instant of time, the equation of motion is then given by:

μr = -Gm₁m₂/r²

Multiplying both sides by 2r/μ, we would have:

2rr = -Gm₁m₂/μ × r/r²

In terms of dt, we would rewrite the equation as follows:

d/dt(r²) = -Gm₁m₂/μ × (dr/dt)/r²

Also, multiplying both sides by dt, we would have this integrated equation:

∫d/dt(r²)dt = -Gm₁m₂/μ × ∫(dr/dt)/r²dt

∫d(r²) = -Gm₁m₂/μ × ∫dr/r²

r² = 2G(m₁ + m₂)1/r + C

For the integration constant, we have:

C = -2G/a(m₁ + m₂).

So, r² = 2G(m₁ + m₂)(a - r)/ar

In terms of dt, we have:

dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\sqrt{\frac{r}{a-r} } dr\\\\T=\int\limits^T_0 dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\int\limits^0_a\sqrt{\frac{r}{a-r} } dr\\\\T =\int\limits^0_a\sqrt{\frac{r}{a-r} } dr

<u>Note:</u> Let the time for the two orbiting particles to collide be T.

By integrating the above through substitution method and substituting eqn. 2, we obtain:

T=\frac{1}{4\sqrt{2}  } \times  \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)] }}\\\\T=\frac{1}{4\sqrt{2}  } \times \tau\\\\T=\frac{\tau}{4\sqrt{2}  }

Time, T = τ/4√2 (proved).

Read more on orbital period here: brainly.com/question/13008452

#SPJ4

<u>Complete Question:</u>

Two particles move about each other in circular orbits under the influence of gravitational forces, with a period t. Their motion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time τ/4√2.

You might be interested in
The core of the Sun has a temperature of 1.5 × 107 K, while the surface of the Sun has a temperature of 4870 K (which varies ove
ololo11 [35]

Answer:

The Sun and planets are shown to the same scale. The small terrestrial planets and tiny Pluto are in the box---the Earth is the blue dot near the center of the box (montage created by Nick Strobel using NASA images).

Size

The Sun is by far the biggest thing in the solar system. From its angular size of about 0.5° and its distance of almost 150 million kilometers, its diameter is determined to be 1,392,000 kilometers. This is equal to 109 Earth diameters and almost 10 times the size of the largest planet, Jupiter. All of the planets orbit the Sun because of its enormous gravity. It has about 333,000 times the Earth's mass and is over 1,000 times as massive as Jupiter. It has so much mass that it is able to produce its own light. This feature is what distinguishes stars from planets.

Composition

What is the Sun made of? Spectroscopy shows that hydrogen makes up about 94% of the solar material, helium makes up about 6% of the Sun, and all the other elements make up just 0.13% (with oxygen, carbon, and nitrogen the three most abundant ``metals''---they make up 0.11%). In astronomy, any atom heavier than helium is called a ``metal'' atom. The Sun also has traces of neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, and iron. The percentages quoted here are by the relative number of atoms. If you use the percentage by mass, you find that hydrogen makes up 78.5% of the Sun's mass, helium 19.7%, oxygen 0.86%, carbon 0.4%, iron 0.14%, and the other elements are 0.54%.

Explanation:

4 0
3 years ago
An electron starts from rest in a vacuum, in a region of strong electric field. The electron moves through a potential differenc
Semenov [28]

Answer:

The kinetic energy is  KE  = 5.67*10^{-18} \ J

Explanation:

From the question we are told that

    The potential difference is  \Delta V  =  36 \ volts

       

The potential energy of the end  is mathematically represented as

        PEs  =  - q *  \Delta V

q  is the charge on an electron with a constant value of q =  1.60 *10^{-19} \  C

       substituting values

      PE  =  - 1.60*10^{-19} *  36

      PE  =  -  5.67*10^{- 18} \ J

Now from the law of energy conservation

     The PE_e    =  KEe

Where  KE _e is the potential  energy at the end

 So  

        KE  = 5.67*10^{-18} \ J

The  negative sign is not includes because kinetic energy can not be negative

7 0
3 years ago
ASAP answer right and I will do a giveaway
Olenka [21]

Explanation:

Ans 1 ) As the gravity of a planet increases, there will be increase in thickness of atmosphere around that planet. The gravitational force of the planets holds the bulks of molecules of atmosphere (as gas will need higher escape velocity).

Ans 2) Mars is the easier planets among all other planets in our solar system as it lies in habitable zone and it as a moderate gravity (where live can survive). Well, there's lot of resources too.

Thanks for asking

6 0
3 years ago
Which of the following best describes the behavior of silica rich magma
dezoksy [38]

Answer:

A. Highly viscous and associated with violent eruptions

Explanation:

Most silica rich magma have high viscosity and huge amount of trapped gases within them. As they continue to upwell and expand, the gases causes violent eruptions near Volcanoes. Most granitic/rhyolitic magma are silica rich.

6 0
3 years ago
Read 2 more answers
How do throns Mostly likely help a plant to survive
jok3333 [9.3K]
Thorns protect plants from insects or harmful bugs.
3 0
3 years ago
Read 2 more answers
Other questions:
  • In the formation of an ionic compound, a metal atom is most likely to _____ valence electrons
    7·2 answers
  • A bicycle tire is spinning counterclockwise at 3.00 rad/s. During a time period Δt = 2.30 s, the tire is stopped and spun in the
    12·1 answer
  • When does water reach its lowest density?
    13·1 answer
  • A 10 kg rock is suspended 320 m above the ground.
    10·1 answer
  • What type of circuit is illustrated?A)closed series circuit
    15·2 answers
  • Which of these are part of the electromagnetic spectrum?
    9·2 answers
  • I need help ASAP
    12·1 answer
  • Why was John Paul Jones's victory important in the war? His victory increased France's confidence in the skill of the Continenta
    7·2 answers
  • Ifa truck starts from rest and it has acceleration of 4 m/s for 5 second
    8·1 answer
  • I need hellp with thisss plssss????????!!!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!