1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
2 years ago
11

Two part?cles move about each other in circular orbits under the influence of gravita- tional forces, with a period t. Their mot

ion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time ?/4v2.
Physics
1 answer:
Pavlova-9 [17]2 years ago
3 0

It has been proven below that the two orbiting particles collided after a time τ/4√2.

<h3>How to prove the particles collided after a given time?</h3>

Assuming the particles to be point particles, the orbital period (time of fall) before the orbital motion is stopped for these particles would be derived by applying the Lagrangian equation for two orbiting particles:

L = T - V

L = 1/2MR² + 1/2μr² + Gm₁m₂/|r|     .....equation 1.

<u>Where:</u>

  • M = m₁ + m₂
  • μ = m₁m₂/m₁ + m₂

<u>Note:</u> The radius, r is constant in a circular orbit.

In Orbit Mechanics, the equation of relative motion is given by:

μr - μrθ = -Gm₁m₂/r²

Letting a = r, we have:

μaθ² = -Gm₁m₂/a²

Making θ the subject of formula and differentiating wrt t, we have:

\theta = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\\frac{d\theta}{dt}  = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} d\theta\\\\

Integrating over a full revolution, we have:

\int\limits^\tau_0  dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} \int\limits^{2 \pi} _0d\theta\\\\\\\tau = \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }}.......equation 2.

Since the motion of the two orbiting particles is suddenly stopped (θ = 0) at a given instant of time, the equation of motion is then given by:

μr = -Gm₁m₂/r²

Multiplying both sides by 2r/μ, we would have:

2rr = -Gm₁m₂/μ × r/r²

In terms of dt, we would rewrite the equation as follows:

d/dt(r²) = -Gm₁m₂/μ × (dr/dt)/r²

Also, multiplying both sides by dt, we would have this integrated equation:

∫d/dt(r²)dt = -Gm₁m₂/μ × ∫(dr/dt)/r²dt

∫d(r²) = -Gm₁m₂/μ × ∫dr/r²

r² = 2G(m₁ + m₂)1/r + C

For the integration constant, we have:

C = -2G/a(m₁ + m₂).

So, r² = 2G(m₁ + m₂)(a - r)/ar

In terms of dt, we have:

dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\sqrt{\frac{r}{a-r} } dr\\\\T=\int\limits^T_0 dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\int\limits^0_a\sqrt{\frac{r}{a-r} } dr\\\\T =\int\limits^0_a\sqrt{\frac{r}{a-r} } dr

<u>Note:</u> Let the time for the two orbiting particles to collide be T.

By integrating the above through substitution method and substituting eqn. 2, we obtain:

T=\frac{1}{4\sqrt{2}  } \times  \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)] }}\\\\T=\frac{1}{4\sqrt{2}  } \times \tau\\\\T=\frac{\tau}{4\sqrt{2}  }

Time, T = τ/4√2 (proved).

Read more on orbital period here: brainly.com/question/13008452

#SPJ4

<u>Complete Question:</u>

Two particles move about each other in circular orbits under the influence of gravitational forces, with a period t. Their motion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time τ/4√2.

You might be interested in
A force of 5 N is applied to the end of a lever that has a length
Klio2033 [76]

Answer:

The answer is 10Nm

Explanation: I ended up just messing around with the numbers, I multiplied 5 and 2 got 10 as my answer and it was right.

4 0
3 years ago
A 91-kg astronaut and a 1300-kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, givi
WARRIOR [948]

Answer:

18.2145 meters

Explanation:

Using the conservation of momentum, we have that:

m1v1 + m2v2 = m1'v1' + m2'v2'

m1 = m1' is the mass of the astronaut, m2=m2' is the mass of the satellite, v1 and v2 are the inicial speed of the astronaut and the satellite (v1 = v2 = 0), and v1' and v2' are the final speed of the astronaut and the satellite. Then we have that:

0 + 0 = 91*v1' + 1300*0.17

v1' = -1300*0.17/91 = -2.4286\ m/s

The negative sign of this speed just indicates the direction the astronaut goes, which is the opposite direction of the satellite.

If the astronaut takes 7.5 seconds to come into contact with the shuttle, their initial distance is:

distance = 2.4286 * 7.5 = 18.2145\ meters

8 0
4 years ago
What causes the inner core to be solid?
natima [27]
Your answer will be (B) - intense pressure.
4 0
3 years ago
Can someone answer this for me? it’s due today and i need it done asap! i will give brainlist!!
Setler79 [48]

Answer:

1. The sound waves are longitudinal because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.

2. A pulse or a wave is introduced into a slinky when a person holds the first coil and gives it a back-and-forth motion. This creates a disturbance within the medium; this disturbance subsequently travels from coil to coil, transporting energy as it moves.  

Explanation:

5 0
3 years ago
Read 2 more answers
A hunter aims at a deer which is 40 yards away. Her cross- bow is at a height of 5ft, and she aims for a spot on the deer 4ft ab
shutvik [7]

Answer:

a)  θ₁ = 0.487º , b)   t = 0.400 s ,        x = 11.73 ft

Explanation:

For this exercise let's use the projectile launch relationships.

The initial height is I = 5 ft and the final height y = 4 ft

            y = y₀ + v_{oy} t - ½ g t²

The distance to the band is x = 40 yard (3 ft / 1 yard) = 120 ft

            x = v₀ₓ t

            t = x / v₀ₓ

We replace

             y –y₀ = v_{oy} x / v₀ₓ - ½ g x² / v₀ₓ²

             v_{oy} = v₀ sin θ

             v₀ₓ = vo cos θ

             

             y –y₀ = x tan θ - ½ g x² / v₀² cos² θ

                5-4 = 120 tan θ - ½ 32 120 / (300 2 cos2 θ)

                1 = 120 tan θ - 0.0213 sec² θ

Let's use the trigonometry relationship

               Sec² θ = 1 - tan² θ

                 1 = 120 tan θ - 0.0213 (1 –tan²θ)

                 0.0213 tan²θ + 120 tanθ -1.0213 = 0

                 

We change variables

          u = tan θ

          u² + 5633.8 u - 48.03 = 0

We solve the second degree equation

          u = [-5633.8 ±√(5633.8 2 + 4 48.03)] / 2

          u = [- 5633.8 ± 5633.82] / 2

           u₁ = 0.0085

           u₂= -5633.81

           u = tan θ

           θ = tan⁻¹ u

For u₁

           θ₁ = tan⁻¹ 0.0085

           θ₁ = 0.487º

For u₂

           θ₂ = -89.99º

The launch angle must be 0.487º

b) let's look for the time it takes for the arrow to arrive

         x = v₀ₓ t

         t = x / v₀ cos θ

         

         t = 120 / (300 cos 0.487)

         t = 0.400 s

The deer must be at a distance of

           v = 20 mph (5280 ft / 1 mi) (1 h / 3600s) = 29.33 ft / s

           x = v t

           x = 29.33 0.4

           x = 11.73 ft

3 0
3 years ago
Other questions:
  • Rank the nonmetals in each set from most reactive (1) to least reactive (3). Bromine: Chlorine: Iodine:
    6·2 answers
  • A train is traveling at 30.0 m/sm/s relative to the ground in still air. The frequency of the note emitted by the train whistle
    15·1 answer
  • Neil rides his long board to Physics class. He travels 8 m east the 4 m north. What distance did he cover? Please include the nu
    14·1 answer
  • Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, t
    7·1 answer
  • The discussion of the electric field between two parallel conducting plates, in this module states that edge effects are less im
    12·1 answer
  • A chain reaction results when a uranium atom is struck by a/an ______________released by a nearby Uranium atom undergoing fissio
    11·1 answer
  • Olivia put a glass of water in the freezer. She left it there for three hours. When she returned, the water had turned to ice. W
    14·1 answer
  • What best defines work?
    11·1 answer
  • HELP IM IN A EXAM!!!
    11·2 answers
  • When the resistance of a circuit is doubled, and no other changes occur, what effect does this have on this current in the circu
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!