1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
2 years ago
11

Two part?cles move about each other in circular orbits under the influence of gravita- tional forces, with a period t. Their mot

ion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time ?/4v2.
Physics
1 answer:
Pavlova-9 [17]2 years ago
3 0

It has been proven below that the two orbiting particles collided after a time τ/4√2.

<h3>How to prove the particles collided after a given time?</h3>

Assuming the particles to be point particles, the orbital period (time of fall) before the orbital motion is stopped for these particles would be derived by applying the Lagrangian equation for two orbiting particles:

L = T - V

L = 1/2MR² + 1/2μr² + Gm₁m₂/|r|     .....equation 1.

<u>Where:</u>

  • M = m₁ + m₂
  • μ = m₁m₂/m₁ + m₂

<u>Note:</u> The radius, r is constant in a circular orbit.

In Orbit Mechanics, the equation of relative motion is given by:

μr - μrθ = -Gm₁m₂/r²

Letting a = r, we have:

μaθ² = -Gm₁m₂/a²

Making θ the subject of formula and differentiating wrt t, we have:

\theta = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\\frac{d\theta}{dt}  = a^{ \frac{3}{2} }[G(m_1 + m_2)]^{ \frac{1}{2} }\\\\dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} d\theta\\\\

Integrating over a full revolution, we have:

\int\limits^\tau_0  dt = \frac{a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }} \int\limits^{2 \pi} _0d\theta\\\\\\\tau = \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)]^{ \frac{1}{2} }}.......equation 2.

Since the motion of the two orbiting particles is suddenly stopped (θ = 0) at a given instant of time, the equation of motion is then given by:

μr = -Gm₁m₂/r²

Multiplying both sides by 2r/μ, we would have:

2rr = -Gm₁m₂/μ × r/r²

In terms of dt, we would rewrite the equation as follows:

d/dt(r²) = -Gm₁m₂/μ × (dr/dt)/r²

Also, multiplying both sides by dt, we would have this integrated equation:

∫d/dt(r²)dt = -Gm₁m₂/μ × ∫(dr/dt)/r²dt

∫d(r²) = -Gm₁m₂/μ × ∫dr/r²

r² = 2G(m₁ + m₂)1/r + C

For the integration constant, we have:

C = -2G/a(m₁ + m₂).

So, r² = 2G(m₁ + m₂)(a - r)/ar

In terms of dt, we have:

dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\sqrt{\frac{r}{a-r} } dr\\\\T=\int\limits^T_0 dt=[\frac{2G}{a} (m_1+m_2)^\frac{-1}{2} ]\int\limits^0_a\sqrt{\frac{r}{a-r} } dr\\\\T =\int\limits^0_a\sqrt{\frac{r}{a-r} } dr

<u>Note:</u> Let the time for the two orbiting particles to collide be T.

By integrating the above through substitution method and substituting eqn. 2, we obtain:

T=\frac{1}{4\sqrt{2}  } \times  \frac{2 \pi a^{ \frac{3}{2} }}{[G(m_1 + m_2)] }}\\\\T=\frac{1}{4\sqrt{2}  } \times \tau\\\\T=\frac{\tau}{4\sqrt{2}  }

Time, T = τ/4√2 (proved).

Read more on orbital period here: brainly.com/question/13008452

#SPJ4

<u>Complete Question:</u>

Two particles move about each other in circular orbits under the influence of gravitational forces, with a period t. Their motion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other. Prove that they collide after a time τ/4√2.

You might be interested in
Help Plaeseeeeeeee!
vladimir2022 [97]

Answer:

golf all on grass covered hill in sunlight

Explanation:

someone pouring/spinning top has a lot of motion going on. a roller coaster has force acting on it which increases the motion.

3 0
3 years ago
Read 2 more answers
Which statement is TRUE?
Salsk061 [2.6K]
Statement B is true.
3 0
3 years ago
Read 2 more answers
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
1.
ale4655 [162]

Answer:

5.0 atm

Explanation:

P₁V₁=P₂V₂

P₁V₁/V₂=P₂

(1)(2.5)/(0•50)=P₂

P₂=5

Pressure is now 5.0 atm

8 0
3 years ago
HELP!!
tresset_1 [31]

Answer:

So do 2400 divided by 70. I got 34.285714 and the numbers behind the decimal are repeating. If you round it you get 34.3

3 0
2 years ago
Other questions:
  • Give two examples of where a permanent magnet might used. &lt;3 
    11·1 answer
  • Calculate the moment of inertia for a solid cylinder with a mass of 100g and a radius of 4.0 cm
    14·2 answers
  • A small office experiences frequent power outages. Users at the location reports that after rebooting their Windows workstations
    14·1 answer
  • Which of the following has the greatest number of particles A) 1 mole of Na B)22.990g of Na C) 1 mole of Be D) 9.012 g of Be E)
    11·2 answers
  • What is terminal velocity and when is it reached?
    12·1 answer
  • A book with a mass of 1.2 kg sits on a bookshelf. If it has a gravitational
    11·1 answer
  • Ice of mass 5 g at 0 °C melts to water at 0 °C.
    13·1 answer
  • Two students are doing an experiment. They mix 9 sugar cubes and 2 teaspoons of baking soda,
    6·1 answer
  • When Maria rubbed her solid graphite pencil against paper, it easily left a clear streak on the paper. Which model could represe
    13·1 answer
  • 34.1 grams / 1.1 mL =
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!