Answer:
a)
there r two types of motion, uniform and non-uniform
uniform means equal distance travelled at equal intervals of time
and non-uniform is exactly the opposite.
b)
quantities which can be represented by magnitude along r called scalar quantities such as speed.
quantities which need magnitude along with direction r called vector quantities such as velocity.
c)
velocity=10m/s
acceleration = u-v/s i.e initial final velocity - initial velocity upon time
acceleration= 0.2m/s sq
time= 30s
10 = displacement/time
10 = x/30
10 = 300
Answer is 300 meters - distance/displacement.
Answer:
When you increase speed, you add energy and increase momentum as it would require more energy to change, stop or reverse the object's direction of travel than before the speed increase. Increasing the speed increases the momentum proportionally.
Explanation:
Momentum = mass x velocity
Before collision
Momentum 1 = 2 kg x 20 m /s = 40 kg x m/s
Momentum 2 = 3 kg x -10m/s = -30 kg x m/s
After collision
Momentum 1 = 2 kg x -5 m/s = -10 m/s
Momentum 2 = 3 kg x V2 = 3V2
Total momentum before = total momentum after
40 + -30 = -10 + 3V2
V2 = <span>6.67 m/s
Total kinetic energy before
</span><span>= (1/2) [ 2 kg * 20 m/s * 2 + 3 kg * ( -10 m/s) *2 ]
= 550 J
</span>
<span>Total kinetic energy after
</span>= (1/2) [ 2 kg * ( - 5 m/s) * 2 + 3 kg * 6.67 m/s *2 ]
= 91.73 J
Total kinetic energy lost during collision
=<span>550 J - 91.73 J
= 458.27 J</span>
When the lemon is cut, it releases gaseous molecules into the surrounding air which are responsible for the lemon's smell. These molecules move slowly at room temperature and the distance that they must cover, in relevance to their size, is immense. These reasons contribute to the fact that the smell takes a while to reach the other side of the room.
<span>The solution for this
problem is:</span>
density = mass / volume <span>
7860 = 1 / ((4/3) pi r^3)
r^3 = 1 / (7860 * 4/3*pi)
r = (1 / (7860 * 4/3*pi))^(1/3)</span>
= 0.067 m <span>
Inertia = (2/5)mr^2</span>
= (2/5) x 1 x 0.067^2
= 0.0017956 kg-m^2 <span>
1/2.3 = 0.4348 rev/s
0.4348 x 2pi = 2.732 rad/s
Angular momentum = Inertia x rad/s
0.0017956 x 2.732 = 0.00490557 kg m^2/s</span>