Answer:
7.8 m/s
Explanation:
Here object is falling with a gravitational acceleration there for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation
V = U + at
V - Final velocity
U - Initial velocity
a - acceleration
t - time
V=U+at
107.8=U + 10×10
= 7.8 m/s
Answer;
-it will move away from the large ball because like charges repel.
Explanation;
-Electric force is the force that pushes apart two like charges, or that pulls together two unlike charges. The basic law of electrostatics Like charges of electricity repel each other, whereas unlike charges attract each other.
When small, positively charged ball is moved close to a large, positively charged ball it would be pushed away from the large positively charged ball since they are both positively charged. One has to put in energy to try to move the small ball closer to the large ball. The closer one try to move it to the large ball, the more energy one has to put in, so the more electrical potential energy the small ball would have.
Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
Hello!
We can use the following equation for calculating power dissipated by a resistor:

P = Power (? W)
i = Current through resistor (2.0 A)
R = Resistance of resistor (50Ω)
Plug in the known values and solve.
