Answer:
El número atómico de cada uno de los átomos es 26
Explanation:
El número de masa es la suma de las masas del protón y el neutrón de un átomo.
El número atómico es el número de protones en el átomo.
Los parámetros dados son;
La suma del número másico de ambos átomos = 110
La suma de los neutrones = 58
Por lo tanto, sea el número de protones y neutrones en un isótopo = P₁ y N₁ y el número de protones y neutrones en el otro isótopo = P₂ y N₂
Tenemos;
P₁ + N₁ + P₂ + N₂ = 110
N₁ + N₂ = 58
Por lo tanto;
P₁ + P₂ = 110 - (N₁ + N₂)
P₁ + P₂ = 110 - 58 = 52
Dado que los isótopos son del mismo elemento, sus protones serán iguales, por lo tanto;
P₁ = P₂
P₁ + P₂ = P₁ + P₁ = 2 × P₁
P₁ + P₂ = 52
2 × P₁ = 52
P₁ = 52/2 = 26 = P₂
El número atómico de ambos átomos es el número de protones en el átomo que es 26.
El número atómico del elemento del átomo es 26
Constant Volume Calorimetry, also know as bomb calorimetry, is used to measure the heat of a reaction while holding volume constant and resisting large amounts of pressure. Although these two aspects of bomb calorimetry make for accurate results, they also contribute to the difficulty of bomb calorimetry. In this module, the basic assembly of a bomb calorimeter will be addressed, as well as how bomb calorimetry relates to the heat of reaction and heat capacity and the calculations involved in regards to these two topics.
Introduction
Calorimetry is used to measure quantities of heat, and can be used to determine the heat of a reaction through experiments. Usually a coffee-cup calorimeter is used since it is simpler than a bomb calorimeter, but to measure the heat evolved in a combustion reaction, constant volume or bomb calorimetry is ideal. A constant volume calorimeter is also more accurate than a coffee-cup calorimeter, but it is more difficult to use since it requires a well-built reaction container that is able to withstand large amounts of pressure changes that happen in many chemical reactions.
Most serious calorimetry carried out in research laboratories involves the determination of heats of combustion ΔHcombustion" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔHcombustionΔHcombustion, since these are essential to the determination of standard enthalpies of formation of the thousands of new compounds that are prepared and characterized each month. In a constant volume calorimeter, the system is sealed or isolated from its surroundings, and this accounts for why its volume is fixed and there is no volume-pressure work done. A bomb calorimeter structure consists of the following:
Steel bomb which contains the reactantsWater bath in which the bomb is submergedThermometerA motorized stirrerWire for ignition
is usually called a “bomb”, and the technique is known as bomb calorimetry
Another consequence of the constant-volume condition is that the heat released corresponds to qv , and thus to the internal energy change ΔUrather than to ΔH. The enthalpy change is calculated according to the formula
(1.1)ΔH=qv+ΔngRT" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; width: 10000em !important; position: relative;">ΔH=qv+ΔngRT(1.1)(1.1)ΔH=qv+ΔngRT
Δng" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔngΔng is the change in the number of moles of gases in the reaction.
Answer = B = Neutrons and Mass Number
Isotopes are defined as those atoms which have same atomic number but different atomic masses.
Atomic mass is basically the number of protons and neutrons present in an atom.
Atomic number is the number of protons present in an atom.
So, in isotopes the number of protons are same but the number of neutrons vary due to which atomic masses also vary.
In given three isotopes, all have same number of protons but different number of neutrons.
i.e.
H-1 = 1 P + 0 N = 1 u (Proton)
H-2 = 1 P + 1 N = 2 u (Deuterium)
H-3 = 1 P + 2 N = 3 u (Tritium)
Hence, it is clear that the number after H shows a change in number of neutrons and mass number.
The answer is A. Water
Bronsted-Lowry base compounds are those that can accept protons
Bronsted-Lowry Acid Compounds are those that can recieve one
Water / H2O is an Amphoteric compund which mean that its molecul can act as a Base and Acid compound, so the answer is A.
The highest value of the ion is the nucleon number. The correct option is a.
<h3>What is nucleon number?</h3>
The mass number of an element is so named because it represents the total number of protons and neutrons in the element.
The total number of protons and neutrons in an atomic nucleus is known as the mass number, also known as the atomic mass number or nucleon number. It is roughly equivalent to the atomic mass expressed in atomic mass units.
In the given ion Q+, the nucleon number has the highest value in the ion
Thus, the correct option is a.
For more details regarding nucleon number, visit:
brainly.com/question/14622763
#SPJ1