<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
BMI is a measure of body fat determined by ones Height, Weight, and Gender.
Thomas Edison is the answer im 100% sure of it.
<h2>
Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>
Explanation:
Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.
That is force 1 is 100 pound with x axis at 20°
F₁ = 100 cos 20 i + 100 sin 20 j
F₁ = 93.97 i + 34.20 j
That is force 2 is 150 pound with x axis at 60°
F₂ = 150 cos 60 i + 150 sin 60 j
F₂ = 75 i + 129.90 j
F₁ + F₂ = 93.97 i + 34.20 j + 75 i + 129.90 j
F₁ + F₂ = 168.97 i + 164.10 j

Resultant is 235.54 pounds at an angle 44.16° to X axis.