Electric force from electomagnetic force and force of gravity from gravitational force
To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

Here,
k = Coulomb's constant
= Charge at each object
r = Distance between them
As the distance is doubled so,





Therefore the factor is 1/4
According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/

.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/

= 13.8 N
Hope this helps!
Gravity slows the upward speed of any rising object by 9.8 m/s every second.
If the ball is tossed upward at 20 m/s, then it's at the top of its arc and its speed has dwindled to zero in (20/9.8) = 2.04 seconds.
During that time, its starting speed is 20 m/s and its ending speed is zero, so its AVERAGE speed all the way up is (1/2) (20 + 0) = 10 m/s .
Sailing upward for 2.04 seconds at an average speed of 10 m/s, the ball rises to (2.04 x 10) = <em>20.4 meters.</em>