Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Answer:
80%
Explanation:
Efficiency = Power output / Power input × 100 %
To calculate efficiency we need to find power output of electric pump.
We can use,
Work done = Energy change
Work done per second = Energy change per second
Work done per second = Power
Therefore, Power = Energy change per second
= Change in potential energy of water per second
=mgh / t
= 200× 10×6 / 10
= 1200 W = 1.2 kW
Now use the first equation to find efficiency,
Efficiency =
× 100%
= 80 %
Answer:

Explanation:
initially the merry go round is at rest
after 6.73 s the merry go round will accelerates to 20 rpm
so final angular speed is given as



so final tangential speed is given as


now average acceleration of the girl is given as



To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as

Here
k = Coulomb's Constant
Charge of each object
d = Distance
Our values are given as,


d = 1 m
a) The electric force on charge
is


Force is positive i.e. repulsive
b) As the force exerted on
will be equal to that act on
,


Force is positive i.e. repulsive
c) If
, a negative sign will be introduced into the expression above i.e.


Force is negative i.e. attractive