They measured the wavelength of light emitted by stars using spectrometers and found it was being redshifted.
This implied the stars were moving away aka the space between the scientists and the star was expanding
Answer:
Distance, d = 112.5 meters
Explanation:
Initially, the bicyclist is at rest, u = 0
Final speed of the bicyclist, v = 30 m/s
Acceleration of the bicycle, 
Let s is the distance travelled by the bicyclist. The third equation of motion is given as :



s = 112.5 meters
So, the distance travelled by the bicyclist is 112.5 meters. Hence, this is the required solution.
Answer:
Volt
Explanation:
Voltage is what makes electric charges move. ... Voltage is also called, in certain circumstances, electromotive force (EMF). Voltage is an electrical potential difference, the difference in electric potential between two places. The unit for electrical potential difference, or voltage, is the volt.
The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.
The coulomb (symbolized C) is the standard unit of electric charge in the International System of Units (SI). ... In terms of SI base units, the coulomb is the equivalent of one ampere-second. Conversely, an electric current of A represents 1 C of unit electric charge carriers flowing past a specific point in 1 s.
An ampere is a unit of measure of the rate of electron flow or current in an electrical conductor. One ampere of current represents one coulomb of electrical charge (6.24 x 1018 charge carriers) moving past a specific point in one second.
It is a wedge because of the ramp thingy
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians