Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you
Answer:

Explanation:
To find Depth D of lake we must need to find the time taken to hit the water.So we use equation of simple motion as:
Δx=vit+(1/2)at²

As we have find the time taken now we need to find the final velocity vf from below equation as

So the depth of lake is given by:
first we need to find total time as
t=3.0-1.01 =1.99 s

An applied force<span> is a </span>force<span> that is </span>applied<span> to an object by a person or another object.
An attractive force is a force of an attraction (where object are attracted by each other). Gravitation is an example of attractive force.
</span>Normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact.
</span><span>The softball experiences an applied force as a result of Amy’s throw. As the ball moves, it experiences attractive force from the air it passes through. It also experiences a downward pull because of the normal force.
Solution A.</span>
B is the right answer. Multiply numbers you get the answer
Answer:

Explanation:
A parallel-plate capacitors consist of two parallel plates charged with opposite charge.
Since the distance between the plates (1 cm) is very small compared to the side of the plates (19 cm), we can consider these two plates as two infinite sheets of charge.
The electric field between two infinite sheets with opposite charge is:

where
is the surface charge density, where
Q is the charge on the plate
A is the area of the plate
is the vacuum permittivity
In this problem:
- The side of one plate is
L = 19 cm = 0.19 m
So the area is

Here we want to find the maximum charge that can be stored on the plates such that the value of the electric field does not overcome:

Substituting this value into the previous formula and re-arranging it for Q, we find the charge:
