What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay
Direction!
Velocity is a vector quantity and speed is a scalar quantity. Vector quantities includes both magnitude and direction, while scalar quantities only have magnitude. :)
Answer:
v = 16.11 m / s
Explanation:
For this exercise we must use the principle of conservation of energy. We set a reference system on the part of the platform without elongation
starting point. When the spring is compressed
Em₀ = K_e + U = ½ k x² + m g x ’
final point. The point where it leaves the platform
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
½ k x² + m g x ’= ½ m v²
v² =
x² + g x
let's calculate
v² =
1.25² + 9.8 1.25
v² = 247.159 + 12.25 = 259.409
v = 16.11 m / s
Well for you to get 980 Hz you divided 344 m/s with .35 m
Answer:
Explanation:
When a charged particle moves in a magnetic field , a force acts on it perpendicular to its velocity.
Force = Bqv , B is magnetic field , q is charge of the particle and v is velocity
= .03 x 6 x 70
= 12.6 N