We know,
Speed = Frequency * Wavelength
Speed = 3 * 0.1 m/s [hertz = 1/sec.]
So, your final answer is 0.3 m/s
Hope this helps!!
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.
Answer: direction
Explanation:
Given
The resultant vector of a force gives us information regarding the direction of the resultant force.
If there are multiple forces acted in a different direction then, the resultant vector describes the direction of the resultant force.
Answer:
Not quite
Explanation:
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength
What determines the strength of a wave?
Wave height is affected by wind speed, wind duration (or how long the wind blows), and fetch, which is the distance over water that the wind blows in a single direction. If wind speed is slow, only small waves result, regardless of wind duration or fetch.
So,
As Wavelength increases, The energy of the wave spreads and it decreases