Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as



Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous. The process of a solid becoming a liquid is called melting.
Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
B low frequency it is the lowest frequency
Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.