1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
3 years ago
15

Imagine two fixed charges on the x axis. Charge one is +q and is located to the left of charge two which is equal to -4q. Where

on the axis (other than at an infinite distance) is there a point at which their net electric field is zero? a) Between the chargesb) To the left of the chargesc) To the right of the charg
Physics
1 answer:
givi [52]3 years ago
7 0

Answer: B)To the left of the charges.

Explanation: between the charges the electric field will not cancel but will be added since electric field lines from both charges point in the same direction. To the right of the charge the -4q will take over as it’s strength overcomes the strength of the +q charge. At this point the magnitude of +q will never reach a magnitude strong enough to cancel the -4q. To the left, it is further away from -4q and is closer to +q and electric field lines point in different direction

You might be interested in
Lab report: Magnetic and Electric Fields . physical science edge 2020
katrin2010 [14]
Magnetic fields are an area around a magnetic material or a moving electric charge with which the force of magnet
5 0
3 years ago
Read 2 more answers
What is the frequency of radiation emitted by a photon of light if the energy released during its transition to ground state is
miskamm [114]
If i was feeling harsh today, I'd say the answer to your question is impossible to obtain due to the fact that photons do not emit radiation, photons ARE the radiation emitted. Though for the sake of it, here is the method...

<u>The simple method:
</u>

E=hf

therefore f=e/h

f=(3.611x10^-15) / 6.63x10^-34)

Answer: 5.45x10^18
3 0
3 years ago
What is the velocity of the object?
dmitriy555 [2]
<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Answer:</h2><h2 /><h2>\huge\boxed{\text{V = 9.5 m/s}}</h2><h2>_____________________________________</h2>

<h2>DATA:</h2>

mass = m = 2kg

Distance = x = 6m

Force = 30N

TO FIND:

Work = W = ?

Velocity = V = ?

<h2>SOLUTION:</h2>

According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.

To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,

{\Longrightarrow}\qquad \qquad \qquad W\ =\ \frac{1}{2}\;(Base)\:(Height)

Base is the x-axis of the graph which is Position i.e. 6m

Height is the y-axis of the graph which is Force i.e. 30N

So,

                           W\ =\ \frac{1}{2}\:6\:x\:30

                           W   =  90 J

The work done is 90 J.

According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.

{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad K.E\\\\{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad \frac{1}{2}\ m\ V^2 \\\\{\Longrightarrow}\qquad \qquad \qquad W\quad =\quad \frac{1}{2}\ 2\ (V_f-V_i)^2\\\\{V_i\ is\ 0\ because\ the\ object\ was\ initially\ at\ rest}\\\\ {\Longrightarrow}\qquad \qquad \qquad W\quad\ =\ \frac{1}{2}\ x\ 2\ (V_f-0)^2 \\\\{\Longrightarrow}\qquad \qquad \qquad 90\quad = \frac{1}{2}\ x\ 2\ (V_f)^2

\\\\{\Longrightarrow}\qquad \qquad \qquad V_f\quad =\ \sqrt{\frac{2\ (90)\ }{2}}\\\\{\Longrightarrow}\qquad \qquad \qquad \boxed {V_f\quad =\ 9.48\ m/s}

\boxed{The\ Velocity\ of\ the\ Object\ of\ mass\ 2kg\ at\ 6\ meters\ of\ distance\ was\ 9.48\ m/s}

<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>

8 0
3 years ago
Consider two identical insulated metal spheres, A and B. Sphere A initially has a charge of -6.0 units and sphere B initially ha
Oksi-84 [34.3K]

Answer:

<em>-2 units of charge</em>

Explanation:

charge on A = Qa = -6 units

charge on B = Qb = 2 units

if the spheres are brought in contact with each other, the resultant charge will be evenly distributed on the spheres when they are finally separated.

charge on each sphere will be = \frac{Qa + Qb}{2}

charge on each sphere =  \frac{-6 + 2}{2} = \frac{-4}{2} = <em>-2 units of charge</em>

8 0
3 years ago
How many meters are there in 4.80 ly ?
Masja [62]
Since each light year is approximately 9 trillion kilometres, 4.80 light years is 43.2 trillion kilometres, or 43,200,000,000,000,000 metres
6 0
3 years ago
Other questions:
  • At 20 C, a steel rod of length 40.000 cm and a brass rod
    11·1 answer
  • Select all of the answers that apply.
    9·2 answers
  • How much force was applied to an object if was moved 2 meters and the work done on the object was 8 joules?
    14·2 answers
  • The bending of wave crests as the reach shallow water is:
    15·1 answer
  • A cubic meter (m³) is ______ a cubic centimeter (cm³).
    13·1 answer
  • Height of the image formed by a lens is-2cm.0what is the nature of the image?
    10·1 answer
  • What is a watt a unit of?<br><br> light<br><br><br> time<br><br><br> distance<br><br><br> power
    15·2 answers
  • What inference can be drawn from the following evidence? Specific atoms of carbon from a dead animal can be traced to the leaves
    6·1 answer
  • Forces and pres
    9·1 answer
  • The volume of a container is reported as 3.49 ft3. what is the volume in units of in3?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!