Answer:
Explanation:
A ) Distance between two adjacent anti-node will be equal to distance between two adjacent nodes . So the required distance is 15 cm .
B ) wave-length, amplitude, and speed of the two traveling waves that form this pattern are as follows
wave length = same as wave length of wave pattern formed. so it is 30 cm
amplitude = 1/2 the amplitude of wave pattern formed so it is .850 / 2 = .425 cm
Speed = frequency x wavelength ( frequency = 1 / time period )
= 1 / .075) x 30 cm
400 cm / m
C ) maximum speed
= ω A
= (2π / T) x A
= 2 X 3.14 x .85 / .075 cm / s
= 71.17 cm / s
minimum speed is zero.
D ) The shortest distance along the string between a node and an antinode
= Wavelength / 4
= 30 / 4
= 7.5 cm
C. since the the heat from the heater is going to the child in <u>waves</u>, it’s<u> radiating </u>
Answer:
The magnitude of the acceleration is 
The direction is
i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle 
The charge on the particle is 
The velocity is 
The the magnetic field is 
The charge experienced a force which is mathematically represented as

Substituting value



Note :

Now force is also mathematically represented as

Making a the subject

Substituting values



Explanation:
It is given that, a long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire.
The charge per unit length of the wire is
and the net charge per unit length is
.
We know that there exist zero electric field inside the metal cylinder.
(a) Using Gauss's law to find the charge per unit length on the inner and outer surfaces of the cylinder. Let
are the charge per unit length on the inner and outer surfaces of the cylinder.
For inner surface,



For outer surface,



(b) Let E is the electric field outside the cylinder, a distance r from the axis. It is given by :


Hence, this is the required solution.
Answer:
Heyyy hope this helps
Convection currents describe the rising, spread, and sinking of gas, liquid, or molten material caused by the application of heat.