- Mass of the elevator (m) = 570 Kg
- Acceleration = 1.5 m/s^2
- Distance (s) = 13 m
- Let the force be F.
- We know, F = ma,
- Therefore, F = (570 × 1.5) N = 855 N
- Angle between distance and force (θ) = 0°
- We know, work done = F s Cos θ
- Therefore, work done by the cable during this part
- = (855 × 13 × Cos 0°) J
- = (855 × 13 × 1) J
- = 11115 J
<u>Answer</u><u>:</u>
<u>1</u><u>1</u><u>1</u><u>1</u><u>5</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
559.5 N
Explanation:
Applying,
v² = u²+2gs............. Equation 1
Where v = final velocity,
From the question,
Given: s = 5.10 m, u = 0 m/s ( from rest)
Constant: 9.8 m/s²
Therefore,
v² = 0²+2×9.8×5.1
v² = 99.96
v = √(99.96)
v = 9.99 m/s
As the diver eneters the water,
u = 9.99 m/s, v = 0 m/s
Given: t = 1.34 s
Apply
a = (v-u)/t
a = 9.99/1.34
a = -7.46 m/s²
F = ma.............. Equation 2
Where F = force, m = mass
Given: m = 75 kg, a = -7.46 m/s²,
F = 75(-7.46)
F = -559.5 N
Hence the average force exerted on the diver is 559.5 N
Answer:
Explanation:
Velocity of Top most point of wheel is twice the Velocity of centre of mass of wheel

Thus angular velocity is given by



![K.E.=\frac{1}{2}m_{stone}V^2+2\left [ \frac{1}{2}m_{cyl}\left [ \frac{V}{2}\right ]^2\right ]+2\left [ \frac{1}{2}I\omega ^2\right ]](https://tex.z-dn.net/?f=K.E.%3D%5Cfrac%7B1%7D%7B2%7Dm_%7Bstone%7DV%5E2%2B2%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7Dm_%7Bcyl%7D%5Cleft%20%5B%20%5Cfrac%7BV%7D%7B2%7D%5Cright%20%5D%5E2%5Cright%20%5D%2B2%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7DI%5Comega%20%5E2%5Cright%20%5D)
![K.E.=\frac{V^2}{2}\left [ m_{stone}+\frac{m_{roller}}{2}\right ]+I\omega ^2](https://tex.z-dn.net/?f=K.E.%3D%5Cfrac%7BV%5E2%7D%7B2%7D%5Cleft%20%5B%20m_%7Bstone%7D%2B%5Cfrac%7Bm_%7Broller%7D%7D%7B2%7D%5Cright%20%5D%2BI%5Comega%20%5E2)
![K.E.=\frac{0.319^2}{2}\left [ 672+\frac{82}{2}\right ]+\frac{82\times 0.343^2\times 0.465^2}{2}](https://tex.z-dn.net/?f=K.E.%3D%5Cfrac%7B0.319%5E2%7D%7B2%7D%5Cleft%20%5B%20672%2B%5Cfrac%7B82%7D%7B2%7D%5Cright%20%5D%2B%5Cfrac%7B82%5Ctimes%200.343%5E2%5Ctimes%200.465%5E2%7D%7B2%7D)

The law of reflection states that the angle of incidence and the angle of reflection will always be equal.
When a ray of light reflects off a surface, the angle of reflection is equal to the angle of incidence.
Answer:
Well, it's because the air offers much greater resistance to the falling motion of the feather than it does to the brick. ... Galileo discovered that objects that are more dense, or have more mass, fall at a faster rate than less dense objects, due to this air resistance. A feather and brick dropped together.
Explanation: