Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
Explanation : We know that two forces acting on the satellite.
The speed of the satellite and the force of the gravity on the satellite then the result , the satellite moves around the earth in a circular motion.
A satellite to move tangentially to a circular path, while revolving around the circular path because the centripetal force is acting on it.
So, we can say gravity is responsible for the motion of the satellite in a circular path.
Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Answer:
The peak emf generated by the coil is 2.67 V
Explanation:
Given;
number of turns, N = 940 turns
diameter, d = 24 cm = 0.24 m
magnetic field, B = 5 x 10⁻⁵ T
time, t = 5 ms = 5 x 10⁻³ s
peak emf, V₀ = ?
V₀ = NABω
Where;
N is the number of turns
A is the area
B is the magnetic field strength
ω is the angular velocity
V₀ = NABω and ω = 2πf = 2π/t
V₀ = NAB2π/t
A = πd²/4
V₀ = N x (πd²/4) x B x (2π/t)
V₀ = 940 x (π x 0.24²/4) x 5 x 10⁻⁵ x (2π/0.005)
V₀ = 940 x 0.04524 x 5 x 10⁻⁵ x 1256.8
V₀ = 2.6723 V = 2.67 V
The peak emf generated by the coil is 2.67 V

As per as my knowledge
The speed of a wave in a medium is affected by <u>d</u><u>e</u><u>n</u><u>s</u><u>i</u><u>t</u><u>y</u>,<u> </u><u>w</u><u>a</u><u>v</u><u>e</u><u>l</u><u>e</u><u>n</u><u>g</u><u>t</u><u>h</u> and <u>t</u><u>e</u><u>m</u><u>p</u><u>e</u><u>r</u><u>a</u><u>t</u><u>u</u><u>r</u><u>e</u><u> </u>:)
(Good luck on your test and mark me brainliest if this helps)