Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.
Answer:It would be orange
Explanation:I hope this helps
Answer:
33.33% = 33%
Explanation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
1 mole of MCO3 will produce → 1 mole of CO2
We need to get the number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
Moles = 0.22 g / 44 g/mol = 0.005 mole
Moles of Mg = moles of CO2 = 0.005 mole
Mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
=33.33 %
Answer:
See explanation
Explanation:
We can describe electrons using four sets of quantum numbers;
principal quantum number (n)
orbital quantum number (l)
magnetic quantum number (ml)
spin quantum number (ms)
Since no two electrons in an atom can have the same value for all four quantum numbers according to Pauli exclusion theory, for the orbitals given one possible value for each quantum number is shown below;
For 1s-
n = 1, l= 0, ml = 0, ms= 1/2
For 2s-
n= 2, l =0, ml=0, ms=1/2
For 1s and 2s orbitals, there is only one possible value for ml which is zero.
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.