Arrhenius' Law relates activation energy, Ea, rate constant, K, and temperature, T as per this equation:
K (T) = A * e ^ (-Ea / RT), where R is the universal constant of gases and A is a constant which accounts for collision frequency..
Then you can find the ration between K's at two different temperatures as:
K1 = A * e ^ (-Ea / RT1)
K2 = A* e ^(-Ea / RT2)
=> K1 / K2 = e ^ { (-Ea / RT1) - Ea / RT2) }
=> K1 / K2 = e ^ {(-Ea/ R ) *( 1 / T1 - 1 T2) }
=> K1 / K2 = e^ { (-205,000 j/mol / 8.314 j/mol*k )* ( 1 / 505K - 1/ 485K) }
=> K1 / K2 = e ^ (2.0134494) ≈ 7.5
Answer: 7.5
Answer:
Temperature gradient = 30
90F - 60F = 30F
The temperature gradient is 30F.
If I am right, let me know.
M/V=D
16.52/2.26=D
Density=6.86 g/cm^3
Answer:
Five
Explanation:
All group 15 elements have five valence electrons, but they vary in their reactivity.
Answer:
The equilibrium position will shift towards the lefthand side.
Explanation:
[CoCl4] 2- (aq) + 6H2O (l) ⇌ [Co(H2O)6] 2+ (aq) + 4 Cl- (aq)
The equation written above in exothermic as written. That is, the forward reaction is exothermic. The equilibrium position is observable by monitoring the colour change of the solution. At the left hand side, the solution is blue but at the right hand side the solution is pink. Addition of heat (in a hot water bath) will shift the equilibrium towards the left hand side, that is formation of more [CoCl4] 2- making the solution to appear blue in colour.