1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
9

What's 7y^2 - y^2? HELP!

Physics
2 answers:
trapecia [35]3 years ago
8 0
Hey there...
Let's solve this problem by steps.

Method 1 -
Step 1 --> Taking GCF
y^2 ( 7 - 1 )

Step 2 ---> Combining like terms
y^2 ( 6)

Or

6y^2  is your final answer.

Method 2 -
We can straight way subtract y^2 from 7y^2 which is
7y^2 - y^2
=\ \textgreater \  6y^2 

Hope it helped you..  :)
34kurt3 years ago
6 0
<span>7y^2 - y^2 = 6y^2 i think!</span>
You might be interested in
Conduction is usually faster/slower in liquids and certain solids than in gases.
KIM [24]
Conduction is slower in liquids and gases.

Liquids it is convection which transmits more heat.. quicker...

Materials which are good conductors of thermal energy are called thermal conductors.

metals are good thermal conductors.


6 0
3 years ago
12.51 A parallel RLC circuit, which is driven by a variable frequency 2-A current source, has the following values: R = 1 kΩ, L
Anastaziya [24]

Answer:

BW = 100 rad/s

wlow = 452.49 rad/s

whigh = 552.49 rad/s

V(jwlow) =1414.21 < 45°V

V(jwhigh) =1414.21 <-45°V

Explanation:

To calculate bandwidth we have formula

BW = 1/RC

BW = 1/ 1000x10x10^¯6

BW = 100 rad/s

We will first calculate resonant frequency and quality factor for half power frequencies.

For resonant frequency

wo = 1/(SQRT LC)

wo = 1/SQRT 400×10¯³ × 10×10^¯6

wo = 500 rad/s

For Quality

Q = wo / BW

Q = 500/100

Q = 5

wlow = wo [-1/2Q+ SQRT (1/2Q)² + 1]

wlow = 500 [-1/2×5 + SQRT (1/2×5)² + 1]

wlow = 452.49 rad/s

whigh = wo [1/2Q+ SQRT (1/2Q)² + 1]

whigh = 500 [1/2×5 + SQRT (1/2×5)² + 1]

whigh = 552.49 rad/s

We will start with admittance at lower half power frequency

Y(jwlow) = (1/R) + (1/jwlow L) + (jwlow C)

Y(jwlow) = (1/1000) + (1/j×452.49×400×10¯³) + (j×452.49×10×10^¯6)

Y(jwlow) = 0.001 - j5.525×10¯³ + j4.525×10¯³

Y(jwlow) = (1-j).10¯³ S

Voltage across the network is calculated by ohm's law

V(jwlow) = I/Y(jwlow)

V(jwlow) = 2/(1-j).10¯³

V(jwlow) = 1414.2 < 45°V

Now we will calculate the admittance at higher half power frequency

Y(jwhigh) = (1/R) + (1/jwhigh L) + (jwhigh C)

Y(jwhigh) = (1/1000) + (1/j×552.49×400×10¯³) + (j×552.49×10×10^¯6)

Y(jwhigh) = 0.001 - j4.525×10¯³ + j5.525×10¯³

Y(jwhigh) = (1+j).10¯³ S

Voltage across network will be calculated by ohm's law

V(jwhigh) = I/Y(jwhigh)

V(jwhigh) = 2/(1+j).10¯³

V(jwhigh) = 1414.2 < - 45°V

6 0
4 years ago
Put the waves in order from highest frequency to lowest frequency
S_A_V [24]
BCA for sure, b the lines are showing more movement
6 0
3 years ago
Read 2 more answers
A man of mass 85 kg runs up a flight of stairs of height 4.6 m in a time period
seraphim [82]

Explanation:

a) Power = work / time = force × distance / time

P = Fd/t

P = (85 kg × 9.8 m/s²) (4.6 m) / (12 s)

P ≈ 319 W

b) P = Fd/t

0.70 (319 W) = (m × 9.8 m/s²) (4.6 m) / (9.6 s)

m = 47.6 kg

7 0
3 years ago
. A 1.50kg mass on a spring has a displacement as a function of time given by the equation: x(t) = (7.40cm)cos[(4.16s-1)t – 2.42
rusak2 [61]

Answer:

Solution:

we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]

Position, velocity and acceleration are all based on the equation of motion.

The equation represents the position.  The first derivative gives the velocity and the 2nd derivative gives the acceleration.

x(t)=8sint

x'(t)=8cost

x"(t)=-8sint

now at time t=2pi/3,

position, x(t)=8sin(2pi/3)=4*squart(3)cm.

velocity, x'(t)=8cos(2pi/3)==4cm/s

acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2

so at present the direction is in y-axis.

5 0
3 years ago
Other questions:
  • Although the evidence is weak, there has been a concern in recent years over possible health effects from the magnetic fields ge
    8·1 answer
  • Which contribution did Johannes Kepler make?
    9·2 answers
  • A parallel-plate capacitor is held at a potential difference of 250 V. A proton is fired toward a small hole in the negative pla
    7·1 answer
  • A yo-yo is made from two uniform disks, each with mass m and radius R, connected by a light axle of radius b. A light, thin stri
    12·1 answer
  • Accelerating charges radiate electromagnetic waves. calculate the wavelength of radiation produced by a proton in a cyclotron wi
    10·2 answers
  • A list of 5 aerobic fitness benefits
    14·1 answer
  • Please help me with 1,2,3,4,5,6
    12·1 answer
  • Which of these is the universal law of gravitation? All matter is attracted and pulled downward toward the ground. Most matter i
    13·1 answer
  • Which best describes a difference between electric current and static electricity?
    6·1 answer
  • NEED HELP ASAP!!!!!!!!!!!!!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!