potassium belongs to group IA of the periodic table.
Answer:
0.823 M was the molarity of the KOH solution.
Explanation:
(Neutralization reaction)
To calculate the concentration of base , we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is KOH.
We are given:

Putting values in above equation, we get:


0.823 M was the molarity of the KOH solution.
The density of magnesium will be 1.74 g/cm³ if 23.5 g of magnesium occupies 13.5 cm³
<h3>What is Density ?</h3>
Density is the measurement of how tightly a material is packed together.
It is defined as the mass per unit volume.
Given ;
- Mass = 23.5 g
- Volume = 13.5 cm³
Formula to calculate density ;
Density = mass / volume
=23.5 / 13.5 = 1.74 g/cm³
Hence, the density of magnesium will be 1.74 g/cm³ if 23.5 g of magnesium occupies 13.5 cm³.
Learn more about density here ;
brainly.com/question/15164682
#SPJ1
Answer:
265.2amu
Explanation:
Given parameters:
Atomic mass = 254.9amu
Abundance of isotope 1 = 72%
Atomic mass of isotope 1 = 250.9amu
Abundance of isotope 2 = 100 - 72 = 28%
Unknown:
Atomic mass of isotope 2 = ?
Solution:
To find the atomic mass of isotope 2, use the expression below:
Atomic mass = (abundance of isotope 1 x atomic mass of isotope 1) + (abundance of isotope 2 x atomic mass of isotope 2)
Now insert the parameters and find the unknown;
254.9 = (0.72 x 250.9) + (0.28 x Atomic mass of isotope 2)
254.9 = 180.648 + 0.28x atomic mass of isotope 2
254.9 - 180.648 = 0.28x atomic mass of isotope 2
74.25 = 0.28 x atomic mass of isotope 2
Atomic mass of isotope 2 = 265.2amu
Answer: I would prepare a standard solution
Explanation: A standard solution is a solution of known concentration (molarity). This is gotten from the stock using dilution principle. (C1V1=C2V2) I would prepare a 0.1M solution of the beverage into a standard 500ml flask.