26g --- 1 mol
56g --- X
X= 56/26 = 2,154 mol
959 ml = 959cm³ = 0,959dm³
C = n/V
C = 2,154/0,959
C = 2,246 mol/dm³
B.
Replace sentence 4 with: In addition, some readers were concerned that the technical details about robots would not be of interest to most students.
Explanation:
i just did the test
A
acceleration is change in speed
Answer:
-1.9 KJ/mol
Explanation:
In order to solve the problem, we have to rearrange the equations in a way in which all molecules of O₂ and CO₂ are eliminated:
2C(diamond) + 2O₂(g) → 2CO₂(g) ΔH₁= 2 x (-395.4 KJ) ------> we multiply by 2 both reactants and products
2 CO₂(g) → 2CO(g) + O₂(g) ΔH₂= 566.0 KJ
CO₂(g) → C(graphite) + O₂(g) ΔH₃= -1 x (-393.5 KJ) ------> we use reverse rxn
2CO(g) → C(graphite) + CO₂(g) ΔH₄= -172.5 KJ
When we cancel the molecules that appear both in reactants and products, the total reaction is the following:
2C(diamond) → 2C(graphite)
ΔHt= ΔH₁ + ΔH₂ + ΔH₃ + ΔH₄ = 2 x (-395.4 KJ) + 566.0 KJ + (-1 x (-393.5 KJ)) - 172.5 KJ
ΔHt= 347.2 KJ
This is for 2 mol of C(diamond) which are converted in 2 mol of C(graphite). To obtain ΔH for the reaction of 1 mol C(diamond) to 1 mol (graphite) we have to divide into 2:
ΔH= -3.8 KJ/2mol= -1.9 KJ/mol
Answer:
No
Explanation:
It is not easier for an atom to lose a proton or a neutron because these particles are held together by very strong nuclear forces within the atom.
Protons are positively charged particles
Neutrons do not carry any charges.
In the nucleus of an atom, both protons and neutrons can be found.
As with both particles, the very strong attractive force makes them very difficult to remove in ordinary chemical reactions.
Nuclear forces are one of the strongest forces that keeps an atom especially the nucleus together. Only in nuclear reactions to we encounter a situation where nuclear materials are changed, in that regard the properties of the atom also changes.