Answer:
-573.67
Explanation:
whenever energy is released in a chemical reaction, we would then expect the delta H of the reaction to be negative because the reaction is an exothermic reaction.
now we have that 2.81 moles of fuel when it combusts would releases 1612kJ of energy
thus, 1 mole will release 1612/2.81 = -573.67kJ of heat
Therefore the delta H of the reaction = -573.67 kJ/mol
The answer is 6,125. To get this you multiply both by 9.8
The variables in the ideal gas constant has V as the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
The gas constant in an ideal gas equation has been the value of the energy absorbed by 1 mole of an ideal gas at standard temperature and pressure.
The value of R has been dependent on the units of volume, temperature and pressure of the ideal gas.
The given value of R has been 0.0821 L.atm/mol.K
The unit in gas constant has been L (Liter) for volume (V).
The unit of pressure (P) has been atm.
The unit of temperature (T) has been Kelvin (K).
Thus the gas law constant used by student has V has the unit of liters and T has the unit of Kelvin. Thus, option C is correct.
For more information about the gas constant, refer to the link:
brainly.com/question/24814070
Kr 5s2 is the correct noble gas configuration for strontium
X ml - <span>25% alcohol mixture
y ml - </span><span>90% alcohol mixture
x+y = 455
0.25x ml alcohol in </span>x ml of 25% alcohol mixture
0.9y ml alcohol in y ml of 90% alcohol mixture
0.75*455= 341.25 ml alcohol in 455 ml of 75% alcohol mixture
0.25x+0.9y=341.25
System of equations:
x+y = 455 /*(-0.25) ------> -0.25x-0.25y = -0.25*455
0.25x+0.9y=341.25
-0.25x-0.25y=-113.75
0.25x+0.9y=341.25 Add both equations
0.25x+0.9y-0.25x-0.25y=341.25-113.75
0.65y =227.5
y=227.5/0.65 = 350 ml of 90% alcohol mixture
x+y=455
x+355=455
x=100 ml of 25% alcohol mixture