Answer:
b. primitive cubic < body-centered cubic < face-centered cubic
Explanation:
The coordination number is defined as <em>the number of atoms (or ions) surrounding an atom (or ion) in a crystal lattice</em>. Its value gives us a measure of how tightly the spheres are packed together. The larger the coordination number, the closer the spheres are to each other.
- In the <u>primitive cubic</u>, each sphere is in contact with 6 spheres, so its <u>coordination number is 6</u>.
- In the <u>body-centered cubic</u>, each sphere is in contact with 8 spheres, so its <u>coordination number is 12</u>.
- In the <u>face-centered cubic</u>, each sphere is in contact with 12 spheres, so its <u>coordination number is 12</u>.
Therefore, the increasing order in density is the primitive cubic first, then the body-centered cubic, and finally the face-centered cubic.
Answer: In metallic bonds, the mobile electrons surrounding the positive ions are called <u><em>dipole</em></u>.
Answer:
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
Explanation:
A buffer system is formed in 1 of 2 ways:
- A weak acid and its conjugate base.
- A weak base and its conjugate acid.
Determine whether mixing each pair of the following results in a buffer.
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
YES. NH₃ is a weak base and NH₄⁺ (from NH₄Cl ) is its conjugate base.
b. 50.0 mL of 0.10 M HCl with 35.0 mL of 0.150 M NaOH.
NO. HCl is a strong acid and NaOH is a strong base.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
YES. HF is a weak acid and it reacts with NaOH to form NaF, which contains F⁻ (its conjugate base).
d. 175.0 mL of 0.10 M NH₃ with 150.0 mL of 0.12 M NaOH.
NO. Both are bases.