Answer:
The correct answer is option B.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products
[S] = Concatenation of substrate = ?
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= initial concentration of enzyme
We have :

[S] =?

![v=V_{max}\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![\frac{V_{max}}{4}=V_{max}\times \frac{[S]}{(0.0050 M+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7Bmax%7D%7D%7B4%7D%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%280.0050%20M%2B%5BS%5D%29%7D)
![[S]=\frac{0.005 M}{3}=1.7\times 10^{-3} M](https://tex.z-dn.net/?f=%5BS%5D%3D%5Cfrac%7B0.005%20M%7D%7B3%7D%3D1.7%5Ctimes%2010%5E%7B-3%7D%20M)
So, the correct answer is option B.
Answer:
oxidized
Explanation:
Each sodium atom loses an electron to form a sodium ion.
Answer:
90.37 g
Explanation:
From Avogadro Number,
1 mole of every substance contains a particle number of 6.02×10²³
From the question,
1 mole of CH₄ contains 6.02×10²³ molecules.
But,
1 mole of CH₄ has a mass of 16 g
Therefore,
16 g of CH₄ contains 6.02×10²³ molecules
Then,
Y g will contain 3.4×10²⁴ molecules
Solve for Y
Y = (16× 3.4×10²⁴)/(6.02×10²³)
Y = 90.37 g
Answer:
I think first one..........
Answer:
C. Atoms have isotopes of an element have different numbers of protons.
Explanation:
The isotopes are the variation in the number of neutrons (neutral charge), with increases the weight of the atom, so the first one, is related to this one.