Answer:
Energy. They need energy.
Explanation:
I needed this ! Thanks a lot
Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)
Answer:c
Explanation:work is force x distance. The wall doesn’t move any distance in A so that’s not work. B involves tasks that do work but I don’t think this is what they’re going for. For a short instance while kicking a ball, your foot is applying a force to the ball which moves a distance before following its own trajectory after contact with your foot. Because the contact has a short duration and isn’t instantaneous, this is work
Answer:
1 mi = 5280 ft * 12 in/ft = 63360 in
A convenient conversion factor (to remember) is 1 m = 39.37 in
63360 in / (39.37 in / m) = 1609.3 m
26 mi + 285 m = 26 * 1609.3 + 385 = 42,228 m