1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
6

1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction

coefficients at points A and B ua= 0.3 and ub=0.1 determine the value of the angle so that the system is in equilibrium if (a) =70 and (b)=90
2) In the situation illustrated below, the blocks of mass Ma=1.0 kg and Mb=2.5 kg are connected by a rope and pulley (of negligible mass and friction) and are on inclined planes with =30 and =50 If the coefficients of kinetic friction between the blocks and the surfaces are ua=0.30 and ub=0.15 determine (a) the tension on the rope and (b) the acceleration of the blocks


3) In the figure below, a ball is thrown from point A on top of an inclined plane of = 57°, with an initial velocity V0 and an angle . The ball takes 1.25 seconds to reach the maximum height of its trajectory (point B) and at this moment it is at a horizontal distance D = 3.7 m from the launch point. For this situation, calculate (a) the launch angle; (b) the initial velocity V0; (c) the total flight time between points A and C; (d) the velocity of the ball at the instant it reaches point C; and (e) the distance D between the launch point and the impact point. Tip: use the relationship
sen(a)/cos(a)=tg(a)



4) In the figure below, a car leaves from rest at = 0 with an acceleration given by at = (0.7t) m/s towards a radius curve R = 90 m. Considering that it is initially at a distance d = 140 from the curve, calculate the module of your total acceleration in (a) t = 10.5 s and (b) t = 12.2 s. If the car started from rest with an At = 3 m/s acceleration, (c) what would be the module of its total acceleration after having
displaced of 187 m?

Physics
1 answer:
Kobotan [32]3 years ago
5 0

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

You might be interested in
Describe some ways that industry and agriculture use physical properties to separate substances.
musickatia [10]
This is more chemistry. But it is a process called fractional distillation, and it basically separates the long chained hydrocarbons from the short chained hydrocarbons through separation dependant on the boiling point of the crude oil.
3 0
3 years ago
Read 2 more answers
A car approaches you at a constant speed, sounding its horn, and you hear a frequency of 76 Hz. After the car goes by, you hear
Talja [164]

Answer:

70.07 Hz

Explanation:

Since the sound is moving away from the observer then

f_o = f_s\frac {(v+vs)}{v} and f_o = f_s\frac {(v-vs)}{v} when moving towards observer

With f_o of 76 then taking speed in air as 343 m/s we have

76 = f_s\times\frac {(343-vs)}{343}

f_s=\frac {343\times 76}{343-v_s}

Similarly, with f_o of 65 we have

65 = f_s\times\frac {(343+vs)}{343}\\f_s=\frac {343\times 65}{343+v_s}

Now

f_s=\frac {343\times 65}{343+v_s}=\frac {343\times 76}{343-v_s}

v_s=27.76 m/s

Substituting the above into  any of the first two equations then we obtain

f_s=70.07 Hz

4 0
3 years ago
Question 1 of 25
finlep [7]

Answer:

<em>2.753*10^-11N</em>

Explanation:

According to Newton's law of gravitation, the force between the masses is expressed as;

F = GMm/d²

M and m are the distances

d is the distance between the masses

Given

M = 3.71 x 10 kg

m = 1.88 x 10^4 kg

d = 1300m

G = 6.67 x 10-11 Nm²/kg

Substitute into the formula

F = 6.67 x 10-11* (3.71 x 10)*(1.88 x 10^4)/1300²

F = 46.52*10^(-6)/1.69 * 10^6

F = 27.53 * 10^{-6-6}

F = 27.53*10^{-12}

F = 2.753*10^-11

<em>Hence the gravitational force between the asteroid is 2.753*10^-11N</em>

<em></em>

6 0
3 years ago
1 If you measured the distance travelled by a snail in
Fittoniya [83]
The answer is m/s hope it helps
3 0
2 years ago
Which of the following weighing balances performs measurement in a closed compartment with no air currents to disturb measuremen
padilas [110]
Out of the following choices given, hydraulic balances performs measurement in a closed compartment with no air currents to disturb measurement. The correct answer is C. 
6 0
4 years ago
Read 2 more answers
Other questions:
  • What are the cons of using a cup made of ceramic
    15·2 answers
  • A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then
    14·1 answer
  • How do we gather most of the information we get about the universe around us?
    13·1 answer
  • In a collision that is not perfectly elastic, what happens to the mechanical energy of the system?
    5·1 answer
  • Glaciers begin with snowfall building up and __________________ the ice. (Choose the best answer)
    9·1 answer
  • Difference Between Newton's first law and third law of motion​
    5·2 answers
  • A gas mixture has 10% O2, 50% Ar (40 gmw) and 40% Pu (244 gmw). What is the density of this mixture?
    8·1 answer
  • Can someone help me with this Physics question please?
    7·2 answers
  • What does a snow leopard eat?
    15·1 answer
  • A basketball player has a 0. 603 probability of making a free throw. if the player shoots 10 free throws, what is the probabilit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!