1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
15

Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha

t of a point charge Q. The electric field Ein inside the sphere (r≤R) is radially outward with field strength
Ein=1/4πϵ0(Q/R^3)r

The electric potential Vout outside the sphere is that of a point charge Q. Find an expression for the electric potential Vin at position r inside the sphere. As a reference, let Vin=Vout at the surface of the sphere.

What is the ratio Vcenter/Vsurface?

Graph V versus r for 0≤r≤3R.

Physics
1 answer:
AlexFokin [52]3 years ago
7 0

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
How does condensation form in a terrarium?
sveticcg [70]

Answer:

Water is condensing due to the difference in temperature between the inside and outside of your terrarium. If your cold house is cooling the temperature of the glass, when warm terrarium air hits the cold surface it reaches its dew point and condenses

3 0
2 years ago
Could somebody help me with this please ❤️​
Nat2105 [25]

sure its kinda sad a random person breaks your heart

4 0
3 years ago
Which substance is a heterogeneous mixture?
anyanavicka [17]

Answer:

A heterogeneous mixture is simply any mixture that is not uniform in composition - it's a non-uniform mixture of smaller constituent parts.

Explanation:

3 0
3 years ago
Read 2 more answers
Would earth orbiting the sun be known as
Nitella [24]
C. Newton’s Third Law of Motion.

Because...
Newtons third law implies conversation of momentum it can also be seen as following from the second law: when one object pushes a second object at some point of contact using an applied force, there must be an equation of opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
5 0
3 years ago
Read 2 more answers
What mistake did Farah make in this experiment? Farah conducted the following experiment to check whether fabrics of different c
Cerrena [4.2K]
She hung up the pieces of cotton BEFORE putting the fan on, also the water evaporating can take longer or shorter even if they are all the same :))
3 0
2 years ago
Other questions:
  • If a bag holds 70.874 grams ,how many itemsare in the bag?​
    8·1 answer
  • What is Newtons third law
    5·2 answers
  • Which number is right
    8·1 answer
  • 4 points
    10·1 answer
  • If the Lifted Index is positive, is the parcel warmer than, the same temperature as, or cooler than its environment?
    14·1 answer
  • In what climates would you expect soil to form fastest? Why?
    12·1 answer
  • If a hockey player starts from rest and accelerates at a rate of 2.1 m/s², how long does it take him to skate 30 m?
    5·1 answer
  • Can you help me? Thanks! 10+ points!
    11·2 answers
  • When talking about Acceleration ,what is significant about the about the sign(+ or -)?​
    10·1 answer
  • 1. ¿Qué presión se ejerce sobre cada una de las cuatro patas de una mesa si su masa es de 20 kg y
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!