1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
2 years ago
5

he drag characteristics of a torpedo are to be studied in a water tunnel using a 1 : 7 scale model. The tunnel operates with fre

shwater at 20 ˚C, whereas the prototype torpedo is to be used in seawater at 15.6 ˚C. To correctly simulate the behavior of the prototype moving with a velocity of 53 m/s, what velocity is required in the water tunnel?
Physics
1 answer:
dusya [7]2 years ago
4 0

Answer:20.03 m/s

Explanation:

Given

L_r=1:7

velocity of Prototype v_p=53 m/s

Taking Froude number same for both flow as it is a dimensionless number for different flow regimes in open Flow

(\frac{v_m}{\sqrt{L_mg}})=(\frac{v_p}{\sqrt{L_pg}})

v_m=v_p\times \sqrt{\frac{L_m}{L_p}}

v_m=53\times \frac{1}{\sqrt{7}}

v_m=20.03 m/s

           

You might be interested in
A rocket, initially at rest on the ground, accelerates straight upward from rest with constant (net) acceleration 29.4 m/s2 m /
Sidana [21]

Answer:

The maximum height is 2881.2 m.

Explanation:

Given that,

Acceleration = 29.4 m/s²

Time = 7.00 s

We need to calculate the distance

Using equation of motion

s=ut+\dfrac{1}{2}at^2

Put the value into the formula

s=0+\dfrac{1}{2}\times29.4\times7^2

s=720.3\ m

We need to calculate the velocity

Using formula of velocity

v=a\times t

Put the value into the formula

v=29.4\times7

v=205.8\ m/s

We need to calculate the height

Using formula of height

H=\dfrac{v^2}{2g}

Put the value into the formula

H=\dfrac{(205.8)^2}{2\times9.8}

H=2160.9\ m

We need to calculate the maximum height

Using formula for maximum height

H'=H+s

Put the value into the formula

H'=2160.9+720.3

H'=2881.2\ m

Hence, The maximum height is 2881.2 m.

4 0
3 years ago
Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and th
Ket [755]

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

5 0
3 years ago
Solve for the BMI weight 58kg Height 1.61​
vaieri [72.5K]

Answer:

Explanation:

BMI= weight/(height × height)          ; weight in kilogram and height in metter

     = 58kg / (1.61m  × 1.61m )

     = (58/ 2.5921) kg/m^{2}

     = 22.375  kg/m^{2}

     ≈ 22.4 kg/m^{2}

7 0
2 years ago
What is the reaction force if a girl pulls on a cow?
Papessa [141]
Answer : B) The cow pulls back on the girl.

From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.
8 0
3 years ago
A 70 ft rope hangs from a helicopter above this room. The rope has a mass per unit length of 2 lb/ft. In order to be rescued fro
Mrac [35]

Answer:

The work done to get you safely away from the test is  2.47 X 10⁴ J.

Explanation:

Given;

length of the rope, L = 70 ft

mass per unit length of the rope, μ = 2 lb/ft

your mass, W = 120 lbs

mass of the 70 ft rope  = 2 lb/ft x 70 ft

                                         = 140 lbs.

Total mass to be pulled to the helicopter, M = 120 lbs  + 140 lbs  

                                                                       = 260 lbs

The work done is calculated from work-energy theorem as follows;

W = Mgh

where;

g is acceleration due gravity = 32.17 ft/s²

h is height the total mass is raised = length of the rope = 70 ft

W = 260 Lb x 32.17 ft/s²  x 70 ft

W = 585494 lb.ft²/s²

1 lb.ft²/s² = 0.0421 J

W = 585494 lb.ft²/s²  = 2.47 X 10⁴ J.

Therefore, the work done to get you safely away from the test is  2.47 X 10⁴ J.

4 0
2 years ago
Other questions:
  • A train consists of 50 cars, each of which has a mass 6.8
    8·1 answer
  • What is the velocity of a car that has traveled 500 miles northeast in 5 hours
    5·2 answers
  • Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings, each of length L = 10cm. At equilibriu
    14·1 answer
  • angela uses a force of 25 newtons to lift her grocery bag while doing 50 joules of work. how far did she lift the grocery bags
    5·1 answer
  • 4.
    15·2 answers
  • What is it known as when a force is applied to an object for an amount of time?
    11·2 answers
  • g A 4-foot spring is elongated167feet long after a mass weighing 16 pounds is attached to it. The medium throughwhich the mass m
    13·1 answer
  • When a 360 nF air capacitor is connected to a power supply, the energy stored in the capacitor is 1.85 x 10-5 J. While the capac
    15·1 answer
  • ) The square plates of a 5000-pF parallel-plate capacitor measure 50 mm by 50 mm and are separated by a dielectric that is 0.23
    13·1 answer
  • Q3. You throw a ball into the air, it reaches a certain height and then comes back to you.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!