Diphosphorus tetraiodide is a covalent compound.
It has low melting point as compared to ionic compounds
It is a rare compound where the oxidation state of Phosphorous is +2.
It is also termed as subhalide of phosphorous.
Answer:
[H3O+] = 1.0*10^-12 M
[OH-] = 0.01 M
Explanation:
We can use the following equation to find the hydronium ion concentration. Plug in the pH and solve for H3O+.
pH = -log[H3O+]
<u>[H3O+] = 1.0*10^-12 M</u>
Now, to find the hydroxide ion concentration we will use the two following equations.
14 = pH + pOH
pOH = -log[OH-]
14 = 12 + pOH
pOH = 2
2 = -log[OH-]
<u>[OH-] = 0.01 M</u>
I think C. Mutualism.
Hope this helps :)
Missing question: 0,535 gram of KIO₃ dissolved in 250 mL of de-ionized water to <span>make primary standard solution.
m(</span>KIO₃) = 0,535 g.
V(KIO₃) = 250 mL ÷ 1000 mL/L = 0,25 L.
n(KIO₃) = m(KIO₃) ÷ M(KIO₃).
n(KIO₃) = 0,535 g ÷ 214 g/mol.
n(KIO₃) = 0,0025 mol.
c(KIO₃) = n(KIO₃) ÷ V(KIO₃).
c(KIO₃) = 0,0025 mol ÷ 0,25 L.
c(KIO₃) = 0,01 mol/L = 0,01 M.