Answer:D.Refractive Indez
Explanation:
It is usually expressed the other way: the ratio of the speed of light in a vacuum to the speed of light in a medium. In that case, it is called the "index of refraction".
Answer:
ma = 48.48kg
Explanation:
To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:
(1)
mc: mass of the chair
k: spring constant = 600N/m
T: period of oscillation of the chair = 0.9s
You solve the equation (1) for mc, and then you replace the values of the other parameters:
(2)
Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:
T': period of chair when the astronaut is sitting = 2.0s
M: mass of the astronaut plus mass of the chair = ?
(3)
Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

The mass of the astronaut is 48.48 kg
1) Current in each bulb: 0.1 A
The two light bulbs are connected in series, this means that their equivalent resistance is just the sum of the two resistances:

And so, the current through the circuit is (using Ohm's law):

And since the two bulbs are connected in series, the current through each bulb is the same.
2) 4 W and 8 W
The power dissipated by each bulb is given by the formula:

where I is the current and R is the resistance.
For the first bulb:

For the second bulb:

3) 12 W
The total power dissipated in both bulbs is simply the sum of the power dissipated by each bulb, so:

There is no <span>radioactive decay</span>
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s