Answer:
The direction of the force at A and B is perpendicular to the walls of the container.
The direction of the force at C is down.
The direction of the force in D is up
The direction of the force at E is to the left.
The attached figure shows the forces exerted by the water at points A, B, C, D and E.
Explanation:
The water is in contact with the bowl and with the fish. It exercises at points A, B, C, D and E, but the direction is different from the force.
The fish has a buoyant force on the water and that direction is up. The direction of at point D is up.
The column of water on the fish has a downward force, therefore the direction of the force at point C is down. The water column to the right of the fish has a force to the left, and the direction at point E is to the left.
The water will exert a force on the walls of the container and this force at points A and B is a on the walls of the container.
Answer:
14 m/s
Explanation:
u = 0, h = 10 m, g = 9.8 m/s^2
Use third equation of motion
v^2 = u^2 + 2 g h
Here, v be the velocity of ball as it just strikes with the ground
v^2 = 0 + 2 x 9.8 x 10
v^2 = 196
v = 14 m/s
Gas giants lol I'm love this kinda stuff nothing else just this question