Answer:
The two integers are 20 and 22.
Step-by-step explanation:
Let x be the first integer.

Answer:
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Step-by-step explanation:
There is a random binomial variable
that represents the number of units come off the line within product specifications in a review of
Bernoulli-type trials with probability of success
. Therefore, the model is
. So:
![P (X < 9) = 1 - P (X \geq 9) = 1 - [{15 \choose 9} (0.91)^{9}(0.09)^{6}+...+{ 15 \choose 15}(0.91)^{15}(0.09)^{0}] = 0.0002](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%209%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%209%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%209%7D%20%280.91%29%5E%7B9%7D%280.09%29%5E%7B6%7D%2B...%2B%7B%2015%20%5Cchoose%2015%7D%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0002%20)
![P (X < 10) = 1 - P (X \geq 10) = 1 - [{15 \choose 10}(0.91)^{10}(0.09)^{5}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0013](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2010%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2010%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2010%7D%280.91%29%5E%7B10%7D%280.09%29%5E%7B5%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0013%20)
![P (X < 11) = 1 - P (X \geq 11) = 1 - [{15 \choose 11}(0.91)^{11}(0.09)^{4}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0082](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2011%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2011%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2011%7D%280.91%29%5E%7B11%7D%280.09%29%5E%7B4%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0082)
![P (X < 12) = 1- P (X \geq 12) = 1 - [{15 \choose 12}(0.91)^{12}(0.09)^{3}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0399](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2012%29%20%3D%201-%20P%20%28X%20%5Cgeq%2012%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2012%7D%280.91%29%5E%7B12%7D%280.09%29%5E%7B3%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0399%20)
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
650 letter permutations * 5040 numbers permutations = total licence number possible = 3,276,000
First, write an inequality equation:
0.25x + 0.1y = 2
There's your first answer. You got this!
Answer:x + 12y = 4
9x + y = 10
-9x + y = -7
Step-by-step explanation:idk for sure tho man